
 Application-specific programming with NanoJ Easy 2.0

New technology for the second generation of the integrated
programming language

In the second generation of our integrated programming lan-
guage, we have fully revised the technology to achieve real-time
capability and a high execution speed. While the programs in
version 1 of NanoJ ran as a byte code in a virtual machine par-
allel to the motor controller and therefore were not subject to a
strictly deterministic timing, the new version now contains a
deterministic 1-ms cycle. This is ensured by means of "coopera-
tive multitasking":

In each 1-ms cycle, the data are first read out of the object direc-
tory, which contains all settings and state values of the controller
as the central database. Then the "operating system" is execut-
ed, such as the high-level functions of the motor controller and
the field bus communication.
The actual controller runs considerably faster at 32 kHz. After the
operating system has executed all cyclically required operations,
it transfers the execution to the user program in the VMM (Virtual
Machine Monitor).

The user program can now modify values from the object dictio-
nary, perform calculations, etc., but must return control to the
operating system before 1 ms has expired. For this reason, this
process is also referred to as cooperative multitasking. Before
the cycle expires, the output values of the user program are
written back to the object directory and are thus processed by
the motor controller in the next cycle. They can also be read out
again via the field bus, for example.

A sand box for the user program

The VMM makes a protected execution environment available
within the firmware. The so-called sand box restricts the user
program to a certain memory area and certain system resources
and thereby ensures that the user program can never cause the
actual controller firmware to crash.

The system also offers protection against a control delay due to
computationally-intensive user programs: If the user program is
not cooperative, i.e. if it does not return control to the operating
system before the cycle expires, the program is terminated. An
error message appears during which the motor controller contin-
ues running smoothly and without delay.

The sand box also enables the second major new feature:
instead of a byte code, the markedly faster machine code is now
executed directly.

The NanoJ Easy programming environment

The NanoJ Easy programming environment is designed for the
simple creation of programs in NanoJ. The programs can be
developed and compiled using the integrated editor with syntax
highlighting. In the case of motor controllers with an Ethernet
interface such as N5, the program can also be transferred direct-
ly into the motor controller and started and stopped.

Example: label dispenser

Below, we will develop a simple program in two steps that
reflects the function of a label dispenser.
The tasks of the other motors in the application are very easy to
implement. The motors for winding and unwinding run in torque
mode, the conveyor in speed mode, and both of these are avail-
able as standard operating modes without programming.

The dispenser, however, requires a small program. Our objective
is to first accelerate the motor to a constant speed that equals
that of the conveyor belt, and then to move a defined distance
(the label length) when the label edge is detected. To keep the
example simple, we have used only one trigger input here.

In real-life applications, there is at least an additional start input
that starts the motor. After you have understood the example, it
will be easy for you to add the input query.

Operating
system

VMM

0 1 2 3 t in ms

...

Read inputs

Write outputs
Buttons for compiling, opening
NanoIP, uploading, starting and
stopping the user program

IP-Adress of the
motor controller

Slot number
of the user
program

A2 Winding of substrate
via torque mode

A3 Label dispenser

S1 Edge sensor
S2 Trigger sensor for
label edge or mark-
ing

A4 Conveyor belt
for conveyed goods

A1 Unwinding
of the label sup-
ply spool via
torque mode

The next line then continues with the first "yield()" with which our
program returns control back to the operating system, thereby
closing the 1-ms cycle. As the subsequent lines show, a "yield()"
follows every transition of the final state machine since every
state needs to be run through in the controller. If there were no
"yield()" in line 22, the program would switch directly into the
"switched on" state from the point of view of the controller. This
is not permitted by the CAN standard and would not function for
this reason.
After the fifth "yield()" and thus after 5 ms, the motor controller is
active and the motor accelerates to a speed of 200 steps/s. The
unit depends on the settings in objects 0x2060-0x2062; in our
case, we assume that these objects contain the default settings.
Thus we have reached the end of the first program version. In the
last lines, an infinite loop prevents the program from coming to
an end since it would otherwise be restarted in the next cycle.

Trigger input and analog input
What we are now missing is the reaction to the trigger input,
which starts a predefined path. Our first program version runs
(almost) infinitely at a constant speed since a target position was
selected that can in fact never be reached. This would normally
be an application for the speed mode; however, instead of using
this mode here, we will simulate it by specifying an unreachable
position target value. This trick saves us the effort of having to
switch between two operating modes in the next step. As a reac-
tion to the input, it is sufficient to reset the target position. In
addition, the analog input is used to easily set the label length.

To see a change at the input in the program, we first need to map
the object for the digital inputs and analog input (lines 8-9):

Mapping of object directory entries
Mapping, in which the variables in the program are assigned to
the object directory entries, occurs in lines 5-7. Line 6, for exam-
ple, specifies that the content of object 0x6081 should be adopt-
ed in the 2-byte, signed (S16) variable "ProfileVelocity" with each
cycle and should be written back at the end of the cycle.
The object addresses or objects correspond to the CAN stan-
dard DS402; 6081 is therefore the maximum positioning speed.
If the mapping is declared not as "inout" but as "input" or "output",
the variable is only read at the beginning of the cycle or is written
back at the end of the cycle, such as the control word in line 6.
The preprocessor instruction "include "wrapper.h"" in line 9 is of
no further interest to us here. It merely needs to be included as
an instruction to the compiler in every NanoJ program.

The main program
In line 13, the main program begins with the "user()" function,
which corresponds to the "main" function in C or Java in NanoJ
and is always executed as the first function.
In line 15, we encounter the second possibility of accessing the
object directory apart from mapping, namely the "od_write"
command. With this command, objects that are required rarely
or only once and that therefore do not need to be read in during
every cycle can be changed or read in with "od_read" during the
program sequence. Thus, the positioning mode is activated here
by accessing the CAN object 0x6060, "Modes of Operation".
In the next two lines, the mapped speed and a target position are
specified. On account of the mapping as "inout", the assignment
of a value to the variable is sufficient here; an explicit write
command is not required. Lastly, the DS402 final state machine
is switched to the "ready to switch on" state via the mapped
control word.

The first simple version
The following program is our first simple version, which only activates the positioning mode and starts the motor:

1 //Flagposition-Mode
2
3 //mapping of frequently used SDO´s:
4
5 map U16 ControlWord as output 0x6040:00
6 map S16 ProfileVelocity as inout 0x6081:00
7 map S32 TargetPosition as inout 0x607A:00
8
9 #include "wrapper.h"
10
11 //starting the main-routine and settings
12
13 void user()
14 {
15 od_write(0x6060,0x00, 1); // Mode of Operation as Profile Position
16 InOut.ProfileVelocity = 200; // setting the target velocity
17 InOut.TargetPosition = 1000000000; // setting the target position (just as a limit)
18
19 //boot-up the state-machine
20
21 Out.ControlWord = 0x6; // enable voltage
22 yield();
23 Out.ControlWord = 0x7; // switched on
24 yield();
25 Out.ControlWord = 0x4F; // operation enable + target position "relative"
26 yield();
27 Out.ControlWord = 0x5F; // start
28 yield();
29
30 while(true)
31 {
32 yield();
33 }
34 }

from the analog value is added and absolute positioning is acti-
vated in line 43. This ensures that the delay of 2 ms until the
position is adopted in the controller after line 47 no longer
influences the determined target position.
The loop at the end is used to wait until the input changes its
state again. Subsequently, the motor would now stop and every
time the input switches, the motor would again travel the
distance specified by the analog input.

We now expand the infinite loop of our first version with the code
for the input query and setting of the target position:
Due to the "&" (logic "and") link of the object for the digital inputs
in line 37 with bit mask 0x10000, only input 1 is monitored. When
the input changes, the target position and the speed are changed.
The target position is calculated from the value of the analog
input (0 to 1023) with a multiplier of 10. When the input is set, the
current position is read out, the target position that is calculated

1 //Flagposition-Mode
2
3 //mapping of frequently used SDO´s:
4
5 map U16 ControlWord as output 0x6040:00
6 map S16 ProfileVelocity as inout 0x6081:00
7 map S32 TargetPosition as inout 0x607A:00
8 map U32 Inputs as input 0x60FD:00
9 map S32 ActualPosition as input 0x6064:00
10 map S32 AnalogInput as input 0x6401:01
11
12 #include "wrapper.h"
13
14 //starting the main-routine and settings
15
16 void user()
17 {
18 od_write(0x6060,0x00, 1); // Mode of Operation as Profile Position
19 InOut.ProfileVelocity = 200; // setting the target velocity
20 InOut.TargetPosition = 1000000000; // setting the target position (just as a limit)
21 od_write(0x3202,0x00, 1); // enable Closed Loop
22
23 //boot-up the state-machine
24
25 Out.ControlWord = 0x6; // enable voltage
26 yield();
27 Out.ControlWord = 0x7; // switched on
28 yield();
29 Out.ControlWord = 0x4F; // operation enable + target position "relative"
30 yield();
31 Out.ControlWord = 0x5F; // start
32 yield();
33
34 //switching the target position
35
36 while(true)
37 {
38 if((In.Inputs & 0x10000) == 0x10000) // check if Input 1 is active
39 {
40 InOut.TargetPosition = In.ActualPosition + (In.AnalogInput * 10); // calculate new target position
41 InOut.ProfileVelocity = 50; // set new target velocity
42 yield();
43 Out.ControlWord = 0x2F; // operation enable abs. positioning
44 yield();
45 Out.ControlWord = 0x3F; // start
46 yield();
47 while((In.Inputs & 0x10000) == 0x10000) // loop while Input 1 is still active
48 {
49 yield();
50 }
51 }
52 yield();
53 }
54 }

9 map S32 ActualPosition as input 0x6064:00
10 map S32 AnalogInput as input 0x6401:01
11
12 #include "wrapper.h"
13
14 //starting the main-routine and settings
15
16 void user()
17 {
18 od_write(0x6060,0x00, 1); // Mode of Operation as Profile Position
19 InOut.ProfileVelocity = 200; // setting the target velocity
20 InOut.TargetPosition = 1000000000; // setting the target position (just as a limit)
21 od_write(0x3202,0x00, 1); // enable Closed Loop
22
23 //boot-up the state-machine
24
25 Out.ControlWord = 0x6; // enable voltage
26 yield();
27 Out.ControlWord = 0x7; // switched on
28 yield();
29 Out.ControlWord = 0x4F; // operation enable + target position "relative"
30 yield();
31 Out.ControlWord = 0x5F; // start
32 yield();
33
34 //switching the target position
35
36 while(true)
37 {
38 if((In.Inputs & 0x10000) == 0x10000) // check if Input 1 is active
39 {
40 InOut.TargetPosition = In.ActualPosition + (In.AnalogInput * 10); // calculate new target position
41 InOut.ProfileVelocity = 50; // set new target velocity
42 yield();
43 Out.ControlWord = 0x2F; // operation enable abs. positioning
44 yield();
45 Out.ControlWord = 0x3F; // start
46 yield();
47 while((In.Inputs & 0x10000) == 0x10000) // loop while Input 1 is still active
48 {
49 yield();
50 }
51 }
52 yield();
53 }
54 }

