Technisches Handbuch NP5-20
Feldbus: EtherCAT

Gültig ab Firmware-Version FIR-v1748
und ab Hardware-Version W003a

Technisches Handbuch Version: 1.0.1
Inhalt

1 Einleitung ... 7
 1.1 Versionshinweise ... 7
 1.2 Urheberrecht, Kennzeichnung und Kontakt ... 7
 1.3 Bestimmungsgemäßer Gebrauch ... 7
 1.4 Gewährleistung und Haftungsausschluss ... 8
 1.5 Fachkräfte .. 8
 1.6 EU-Richtlinien zur Produktsicherheit ... 8
 1.7 Mitgeltende Vorschriften .. 8
 1.8 Verwendete Symbole ... 8
 1.9 Hervorhebungen im Text .. 9
 1.10 Zahlenwerte ... 9
 1.11 Bits .. 9
 1.12 Zählrichtung (Pfeile) ... 10

2 Sicherheits- und Warnhinweise .. 11

3 Technische Daten und Anschlussbelegung ... 12
 3.1 Umgebungsbedingungen .. 12
 3.2 Maßzeichnungen ... 12
 3.3 Elektrische Eigenschaften und technische Daten ... 13
 3.4 Übertemperaturschutz ... 14
 3.5 LED-Signalisierung ... 15
 3.6 Anschlussbelegung ... 17

4 Hardware-Installation ... 21
 4.1 Anschließen der Steuerung ... 21

5 Inbetriebnahme .. 36
 5.1 Kommunikation aufbauen ... 36
 5.2 Motordaten einstellen ... 37
 5.3 Motor anschließen .. 38
 5.4 Auto-Setup ... 38

6 Generelle Konzepte .. 42
 6.1 Betriebsarten ... 42
 6.2 CiA 402 Power State Machine ... 46
 6.3 Benutzerdefinierte Einheiten .. 51
 6.4 Begrenzung des Bewegungsbereichs .. 56
 6.5 Zykluszeiten .. 56

7 Betriebsmodi .. 58
 7.1 Profile Position .. 58
 7.2 Velocity ... 67
 7.3 Profile Velocity .. 69
 7.4 Profile Torque ... 71
 7.5 Homing ... 73
Technisches Handbuch NP5-20 (EtherCAT)

Inhalt

7.6 Interpolated Position Mode... 80
7.7 Cyclic Synchronous Position.. 82
7.8 Cyclic Synchronous Velocity... 84
7.9 Cyclic Synchronous Torque... 85
7.10 Takt-Richtungs-Modus.. 86
7.11 Auto-Setup... 88

8 Spezielle Funktionen.. 90
8.1 Digitale Ein- und Ausgänge... 90
8.2 Automatische Bremsensteuerung... 99
8.3 I\(^{\text{1}}\) T Motor-Überlastungsschutz.. 101
8.4 Objekte speichern.. 103

9 EtherCAT... 109

10 Programmierung mit NanoJ... 110
10.1 NanoJ-Programm.. 110
10.2 Mapping im NanoJ-Programm.. 114
10.3 Systemcalls im NanoJ-Programm... 115

11 Objektverzeichnis Beschreibung... 117
11.1 Übersicht.. 117
11.2 Aufbau der Objektbeschreibung... 117
11.3 Objektbeschreibung... 117
11.4 Wertebeschreibung.. 119
11.5 Beschreibung... 120
1000h Device Type.. 120
1001h Error Register.. 121
1003h Pre-defined Error Field... 122
1008h Manufacturer Device Name... 126
1009h Manufacturer Hardware Version.. 126
100Ah Manufacturer Software Version... 127
1010h Store Parameters.. 127
1011h Restore Default Parameters... 131
1018h Identity Object.. 134
1020h Verify Configuration... 136
1600h Receive PDO 1 Mapping Parameter.. 137
1601h Receive PDO 2 Mapping Parameter.. 139
1602h Receive PDO 3 Mapping Parameter.. 142
1603h Receive PDO 4 Mapping Parameter.. 144
1A00h Transmit PDO 1 Mapping Parameter... 146
1A01h Transmit PDO 2 Mapping Parameter... 149
1A02h Transmit PDO 3 Mapping Parameter... 151
1A03h Transmit PDO 4 Mapping Parameter... 154
1C00h Sync Manager Communication Type.. 156
1C12h Sync Manager PDO Assignment.. 158
1C13h Sync Manager PDO Assignment.. 159
1C32h Output Sync Manager Synchronization.. 161
1C33h Input Sync Manager Synchronization.. 162
1F50h Program Data.. 163
1F51h Program Control.. 165
1F57h Program Status.. 166
2030h Pole Pair Count... 167
2031h Maximum Current.. 168
2034h Upper Voltage Warning Level.. 168
Technisches Handbuch NP5-20 (EtherCAT)

Inhalt

2035h Lower Voltage Warning Level.. 169
2036h Open Loop Current Reduction Idle Time... 169
2037h Open Loop Current Reduction Value/factor.. 170
2038h Brake Controller Timing.. 171
2039h Motor Currents... 172
203Ah Homing On Block Configuration.. 174
203Bh I2t Parameters... 176
203Dh Torque Window.. 178
203Eh Torque Window Time Out.. 178
203Fh Max Slippage Time Out... 179
2056h Limit Switch Tolerance Band.. 180
2057h Clock Direction Multiplier.. 180
2058h Clock Direction Divider... 181
2059h Encoder Configuration... 181
205Ah Absolute Sensor Boot Value (in User Units).. 182
205Bh Clock Direction Or Clockwise/Counter Clockwise Mode... 183
2084h Bootup Delay... 183
2101h Fieldbus Module Availability.. 183
2102h Fieldbus Module Control... 185
2103h Fieldbus Module Status... 186
2110h EtherCAT Slave Status... 188
2300h NanoJ Control... 189
2301h NanoJ Status... 189
2302h NanoJ Error Code... 190
230Fh Uptime Seconds... 192
2310h NanoJ Input Data Selection.. 192
2320h NanoJ Output Data Selection... 193
2330h NanoJ In/output Data Selection.. 195
2400h NanoJ Inputs... 196
2410h NanoJ Init Parameters... 197
2500h NanoJ Outputs... 198
2600h NanoJ Debug Output.. 199
2701h Customer Storage Area.. 200
2800h Bootloader And Reboot Settings.. 201
3202h Motor Drive Submode Select.. 202
3203h Feedback Selection... 203
3204h Feedback Mapping... 205
3210h Motor Drive Parameter Set.. 207
3212h Motor Drive Flags... 211
3220h Analog Inputs.. 212
3221h Analogue Inputs Control.. 213
3231h Flex IO Configuration... 214
3240h Digital Inputs Control.. 216
3242h Digital Input Routing.. 218
3243h Digital Input Homing Capture.. 220
3250h Digital Outputs Control... 222
3252h Digital Output Routing... 224
3320h Read Analogue Input.. 226
3321h Analogue Input Offset.. 227
3322h Analogue Input Pre-scaling.. 228
3390h Feedback Hall... 229
33A0h Feedback Incremental A/B/I 1... 232
33A1h Feedback Incremental A/B/I 2... 233
3700h Deviation Error Option Code.. 235
4012h HW Information... 235
4013h HW Configuration.. 236
4014h Operating Conditions.. 237
4040h Drive Serial Number.. 239
4041h Device Id.. 240
<table>
<thead>
<tr>
<th>Register Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>603Fh</td>
<td>Error Code</td>
<td>240</td>
</tr>
<tr>
<td>6040h</td>
<td>Controlword</td>
<td>241</td>
</tr>
<tr>
<td>6041h</td>
<td>Statusword</td>
<td>242</td>
</tr>
<tr>
<td>6042h</td>
<td>VI Target Velocity</td>
<td>243</td>
</tr>
<tr>
<td>6043h</td>
<td>VI Velocity Demand</td>
<td>244</td>
</tr>
<tr>
<td>6044h</td>
<td>VI Velocity Actual Value</td>
<td>244</td>
</tr>
<tr>
<td>6046h</td>
<td>VI Velocity Min Max Amount</td>
<td>245</td>
</tr>
<tr>
<td>6048h</td>
<td>VI Velocity Acceleration</td>
<td>246</td>
</tr>
<tr>
<td>6049h</td>
<td>VI Velocity Deceleration</td>
<td>247</td>
</tr>
<tr>
<td>604Ah</td>
<td>VI Velocity Quick Stop</td>
<td>248</td>
</tr>
<tr>
<td>604Ch</td>
<td>VI Dimension Factor</td>
<td>249</td>
</tr>
<tr>
<td>605Ah</td>
<td>Quick Stop Option Code</td>
<td>250</td>
</tr>
<tr>
<td>6058h</td>
<td>Shutdown Option Code</td>
<td>251</td>
</tr>
<tr>
<td>605Ch</td>
<td>Disable Option Code</td>
<td>251</td>
</tr>
<tr>
<td>605Dh</td>
<td>Halt Option Code</td>
<td>252</td>
</tr>
<tr>
<td>605Eh</td>
<td>Fault Option Code</td>
<td>253</td>
</tr>
<tr>
<td>6060h</td>
<td>Modes Of Operation</td>
<td>253</td>
</tr>
<tr>
<td>6061h</td>
<td>Modes Of Operation Display</td>
<td>254</td>
</tr>
<tr>
<td>6062h</td>
<td>Position Demand Value</td>
<td>255</td>
</tr>
<tr>
<td>6063h</td>
<td>Position Actual Internal Value</td>
<td>255</td>
</tr>
<tr>
<td>6064h</td>
<td>Position Actual Value</td>
<td>256</td>
</tr>
<tr>
<td>6065h</td>
<td>Following Error Window</td>
<td>256</td>
</tr>
<tr>
<td>6066h</td>
<td>Following Error Time Out</td>
<td>257</td>
</tr>
<tr>
<td>6067h</td>
<td>Position Window</td>
<td>257</td>
</tr>
<tr>
<td>6068h</td>
<td>Position Window Time</td>
<td>258</td>
</tr>
<tr>
<td>6068h</td>
<td>Velocity Demand Value</td>
<td>258</td>
</tr>
<tr>
<td>606Ch</td>
<td>Velocity Actual Value</td>
<td>259</td>
</tr>
<tr>
<td>606Dh</td>
<td>Velocity Window</td>
<td>259</td>
</tr>
<tr>
<td>606Eh</td>
<td>Velocity Window Time</td>
<td>260</td>
</tr>
<tr>
<td>6071h</td>
<td>Target Torque</td>
<td>260</td>
</tr>
<tr>
<td>6072h</td>
<td>Max Torque</td>
<td>261</td>
</tr>
<tr>
<td>6074h</td>
<td>Torque Demand</td>
<td>262</td>
</tr>
<tr>
<td>6075h</td>
<td>Motor Rated Current</td>
<td>262</td>
</tr>
<tr>
<td>6077h</td>
<td>Torque Actual Value</td>
<td>262</td>
</tr>
<tr>
<td>607Ah</td>
<td>Target Position</td>
<td>263</td>
</tr>
<tr>
<td>607Bh</td>
<td>Position Range Limit</td>
<td>263</td>
</tr>
<tr>
<td>607Ch</td>
<td>Home Offset</td>
<td>264</td>
</tr>
<tr>
<td>607Dh</td>
<td>Software Position Limit</td>
<td>265</td>
</tr>
<tr>
<td>607Eh</td>
<td>Polarity</td>
<td>266</td>
</tr>
<tr>
<td>607Fh</td>
<td>Max Profile Velocity</td>
<td>267</td>
</tr>
<tr>
<td>6080h</td>
<td>Max Motor Speed</td>
<td>267</td>
</tr>
<tr>
<td>6081h</td>
<td>Profile Velocity</td>
<td>268</td>
</tr>
<tr>
<td>6082h</td>
<td>End Velocity</td>
<td>268</td>
</tr>
<tr>
<td>6083h</td>
<td>Profile Acceleration</td>
<td>269</td>
</tr>
<tr>
<td>6084h</td>
<td>Profile Deceleration</td>
<td>269</td>
</tr>
<tr>
<td>6085h</td>
<td>Quick Stop Deceleration</td>
<td>270</td>
</tr>
<tr>
<td>6086h</td>
<td>Motion Profile Type</td>
<td>270</td>
</tr>
<tr>
<td>6087h</td>
<td>Torque Slope</td>
<td>271</td>
</tr>
<tr>
<td>608Fh</td>
<td>Position Encoder Type</td>
<td>271</td>
</tr>
<tr>
<td>6090h</td>
<td>Velocity Encoder Resolution</td>
<td>272</td>
</tr>
<tr>
<td>6091h</td>
<td>Gear Ratio</td>
<td>273</td>
</tr>
<tr>
<td>6092h</td>
<td>Feed Constant</td>
<td>275</td>
</tr>
<tr>
<td>6096h</td>
<td>Velocity Factor</td>
<td>276</td>
</tr>
<tr>
<td>6097h</td>
<td>Acceleration Factor</td>
<td>277</td>
</tr>
<tr>
<td>6098h</td>
<td>Homing Method</td>
<td>278</td>
</tr>
<tr>
<td>6099h</td>
<td>Homing Speed</td>
<td>278</td>
</tr>
<tr>
<td>609Ah</td>
<td>Homing Acceleration</td>
<td>279</td>
</tr>
<tr>
<td>60A2h</td>
<td>Jerk Factor</td>
<td>280</td>
</tr>
<tr>
<td>60A4h</td>
<td>Profile Jerk</td>
<td>281</td>
</tr>
</tbody>
</table>
12 Copyrights

12.1 Einführung ... 309
12.2 AES ... 309
12.3 MD5 ... 309
12.4 uIP ... 310
12.5 DHCP .. 310
12.6 CMSIS DSP Software Library ... 310
12.7 FatFs ... 310
12.8 Protothreads ... 311
12.9 lwIP ... 311
1 Einleitung

Die NP5 ist eine Steuerung für BLDC- und Schrittmotoren im Steckmodulformat (Steckleiste im PCI-Format) zur Integration in Ihre eigenen Entwicklungen.

<table>
<thead>
<tr>
<th>Hinweis</th>
</tr>
</thead>
</table>

Dieses Handbuch beschreibt die Integration der NP5 in Ihr Motherboard und die Funktionen der Steuerung. Weiterhin wird gezeigt, wie Sie die Steuerung über die Kommunikationsschnittstelle ansprechen und programmieren können.

Weitere Informationen zum Gerät finden Sie auf der Nanotec Homepage www.nanotec.de.

1.1 Versionshinweise

<table>
<thead>
<tr>
<th>Version Handbuch</th>
<th>Datum</th>
<th>Änderungen</th>
<th>Version Firmware</th>
<th>Version Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>03/2018</td>
<td>erste Veröffentlichung</td>
<td>FIR-v1748</td>
<td>W003a</td>
</tr>
<tr>
<td>1.0.1</td>
<td>08/2018</td>
<td>Ergänzungen und Fehlerkorrekturen</td>
<td>FIR-v1748</td>
<td>W003a</td>
</tr>
</tbody>
</table>

1.2 Urheberrecht, Kennzeichnung und Kontakt

Nanotec Electronic GmbH & Co. KG
Kapellenstraße 6
85622 Feldkirchen
Deutschland

Tel. +49 89 900 686-0
Fax +49 89 900 686-50

www.nanotec.de

TwinCAT™ ist ein eingetragenes Warenzeichen der Beckhoff Automation GmbH™.

1.3 Bestimmungsgemäßer Gebrauch

Die NP5 dient der Steuerung von Schritt- und BLDC-Motoren und ist für den Einsatz unter den freigegebenen Umgebungsbedingungen konzipiert.

Die Steuerung muss über eine Steckleiste im PCI-Format und ein geeignetes Motherboard an Motoren angeschlossen werden. Die Systemgrenze der Steuerung endet an der PCI-Steckleiste.
Ein anderer Gebrauch gilt als nicht bestimmungsgemäß.

Hinweis
Änderungen oder Umbauten der Steuerung sind nicht zulässig.

1.4 Gewährleistung und Haftungsausschluss

Es gelten unsere Allgemeinen Geschäftsbedingungen: de.nanotec.com/service/agb/.

1.5 Fachkräfte
Nur Fachkräfte dürfen das Gerät installieren, programmieren und in Betrieb nehmen:
- Personen, die eine entsprechende Ausbildung und Erfahrung im Umgang mit Motoren und deren Steuerung haben.
- Personen, die den Inhalt dieses technischen Handbuchs kennen und verstehen.
- Personen, die die geltenden Vorschriften kennen.

1.6 EU-Richtlinien zur Produktsicherheit
Folgende EU-Richtlinien wurden beachtet:
- RoHS-Richtlinie (2011/65/EU, 2015/863/EU)

1.7 Mitgeltende Vorschriften
Neben diesem technischen Handbuch sind folgende Vorschriften zu beachten:
- Unfallverhütungsvorschriften
- örtliche Vorschriften zur Arbeitssicherheit

1.8 Verwendete Symbole
Alle Hinweise sind in einheitlicher Form. Der Grad der Gefährdung wird in die nachfolgenden Klassen eingeteilt.

<table>
<thead>
<tr>
<th>VORSICHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der Hinweis VORSICHT verweist auf eine möglicherweise gefährliche Situation. Die Missachtung des Hinweises führt möglicherweise zu mittelschweren Verletzungen.</td>
</tr>
<tr>
<td>Beschreibt, wie Sie die gefährliche Situation vermeiden.</td>
</tr>
</tbody>
</table>
1.9 Hervorhebungen im Text

Im Dokument gelten folgende Konventionen:

Ein **fett** hervorgehobener Text markiert Querverweise und Hyperlinks:
- Folgende Bits im Objekt \texttt{6041}\textsubscript{h} (Statusword) haben eine gesonderte Funktion:
- Eine Liste verfügbarer Systemcalls findet sich im Kapitel **Systemcalls im NanoJ-Programm**.

Ein *kursiv* hervorgehobener Text markiert benannte Objekte:
- Lesen Sie das *Installationshandbuch*.
- Benutzen Sie die Software *Plug & Drive Studio*, um das Auto-Setup durchzuführen.
- Für Software: Im Tab *Operation* finden Sie die entsprechenden Informationen.
- Für Hardware: Benutzen Sie den *EIN/AUS-Schalter*, um das Gerät einzuschalten.

Ein Text in `courier` markiert einen Code-Abschnitt oder Programmierbefehl:
- Die Zeile mit dem Befehl `od_write(0x6040, 0x00, 5);` ist wirkungslos.
- Die NMT-Nachricht baut sich wie folgt auf: `000 | 81 2A`

Ein Text in "Anführungszeichen" markiert Benutzereingaben:
- NanoJ-Programm starten durch Beschreiben von Objekt 2300\textsubscript{h}, Bit 0 = "1".
- Wird in diesem Zustand bereits Haltemoment benötigt, muss in das 3212\textsubscript{h}:01\textsubscript{h} der Wert "1" geschrieben werden.

1.10 Zahlenwerte

Zahlenwerte werden grundsätzlich in dezimaler Schreibweise angegeben. Sollte eine hexadezimale Notation verwendet werden, wird das mit einem tiefgestellten \textsubscript{h} am Ende der Zahl markiert.

Die Objekte im Objektverzeichnis werden mit Index und Subindex folgendermaßen notiert:
\texttt{<Index>:<Subindex>}

Sowohl der Index als auch der Subindex werden in hexadezimaler Schreibweise angegeben. Sollte kein Subindex notiert sein, gilt der Subindex 00\textsubscript{h}.

Beispiel: Der Subindex 5 des Objekts 1003\textsubscript{h} wird adressiert mit `1003\textsubscript{h}:05\textsubscript{h}`, der Subindex 00 des Objekts 6040\textsubscript{h} mit `6040\textsubscript{h}`.

1.11 Bits

Einzelne Bits in einem Objekt beginnen bei der Nummerierung immer bei dem LSB (Bitnummer 0). Siehe nachfolgende Abbildung am Beispiel des Datentyps `UNSIGNED8`.

<table>
<thead>
<tr>
<th>Bit Nummer</th>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\pm 55_{\text{max}} \pm 85_{\text{perc}} \]
1.12 Zählrichtung (Pfeile)

In Abbildungen gilt die Zählrichtung immer in Richtung eines Pfeiles. Die in der nachfolgenden Abbildung beispielhaft dargestellten Objekte 60C5ₕ und 60C6ₕ werden beide positiv angegeben.
2 Sicherheits- und Warnhinweise

Hinweis
- Beschädigung der Steuerung.
- Ein Wechsel der Verdrahtung im Betrieb kann die Steuerung beschädigen.
- Ändern Sie die Verdrahtung nur im spannungsfreien Zustand und warten Sie nach dem Abschalten, bis sich die Kondensatoren entladen haben.

Hinweis
- Störung der Steuerung durch Erregerspannung des Motors.
- Während des Betriebs können Spannungsspitzen die Steuerung beschädigen.
- Verbauen Sie geeignete Schaltungen (z. B. Stützkondensator), die Spannungsspitzen abbauen.

Hinweis
- Ein Verpolungsschutz ist nicht gegeben.
- Bei Verpolung entsteht ein Kurzschluss zwischen Versorgungsspannung und GND (Masse) über die Leistungsdiode.
- Installieren Sie eine Leitungsschutzeinrichtung (Sicherung) in der Zuleitung.

Hinweis
- Das Gerät enthält Bauteile, die empfindlich gegen elektrostatische Entladung sind.
- Unsachgemäßer Umgang kann das Gerät beschädigen.
- Beachten Sie die Grundprinzipien des ESD-Schutzes beim Umgang mit dem Gerät.
3 Technische Daten und Anschlussbelegung

3.1 Umgebungsbedingungen

<table>
<thead>
<tr>
<th>Umgebungsbedingung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schutzklasse</td>
<td>kein IP-Schutz</td>
</tr>
<tr>
<td>Umgebungstemperatur (Betrieb)</td>
<td>-10 … +40°C</td>
</tr>
<tr>
<td>Luftfeuchtigkeit (nicht kondensierend)</td>
<td>0 … 95 %</td>
</tr>
<tr>
<td>Aufstellhöhe über NN (ohne Leistungsbeschränkung)</td>
<td>1500 m</td>
</tr>
<tr>
<td>Umgebungstemperatur (Lagerung)</td>
<td>-25 … +85°C</td>
</tr>
</tbody>
</table>

3.2 Maßzeichnungen

Alle Maße sind in Millimetern.
3.3 Elektrische Eigenschaften und technische Daten

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Beschreibung/Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsspannung</td>
<td>12 - 48 V DC ±4%</td>
</tr>
<tr>
<td>Nennstrom</td>
<td>6 A<sub>eff</sub></td>
</tr>
<tr>
<td>Spitzenstrom</td>
<td>10 A<sub>eff</sub> (für 1 Sekunde)</td>
</tr>
<tr>
<td>Kommutierung</td>
<td>Schrittmotor Open Loop, Schrittmotor Closed Loop mit Encoder, BLDC sinuskommutiert über Hallsensor, BLDC sinuskommutiert über Encoder</td>
</tr>
<tr>
<td>Anmerkung:</td>
<td>Für Encoder und Hallsensor ist eine externe Beschaltung erforderlich!</td>
</tr>
<tr>
<td>Betriebsmodi</td>
<td>Profile Position Mode, Profile Velocity Mode, Profile Torque Mode, Velocity Mode, Homing Mode, Interpolated Position Mode, Cyclic Sync Position Mode, Cyclic Sync Velocity Mode, Cyclic Synchronous Torque Mode, Takt-Richtung-Modus</td>
</tr>
<tr>
<td>Sollwertvorgabe/ Programmierung</td>
<td>Takt-Richtung, Analog, NanoJ-Programm</td>
</tr>
<tr>
<td>Schnittstellen</td>
<td>2x SPI, 1x I²C</td>
</tr>
<tr>
<td>Encoder/Hall</td>
<td>2x Encoder und 1x Hallsensor</td>
</tr>
<tr>
<td>Anmerkung:</td>
<td>Für Encoder und Hallsensor ist eine externe Beschaltung erforderlich!</td>
</tr>
</tbody>
</table>
Technische Daten und Anschlussbelegung

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Beschreibung/Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O</td>
<td>6x General I/O, 2x Analogeingang, 1x Ausgang für die externe Bremse (Open-Drain), 1x Ausgang für die externe Ballast-Schaltung</td>
</tr>
<tr>
<td>Steckverbinder</td>
<td>PCI Express 8x, 1,0 mm RM, 2×49 Kontakte</td>
</tr>
<tr>
<td>Übertemperatur</td>
<td>Schutzschaltung bei Temperatur > 75 °C</td>
</tr>
<tr>
<td>Verpolungsschutz</td>
<td>Verpolungsschutz durch Leistungsdiode (Kurzschluss zwischen +UB und GND, Sicherung in Zuleitung nötig)</td>
</tr>
<tr>
<td>Sicherungsgröße für Verpolungsschutz:</td>
<td>I_{max} (Steuerung) < I (Auslösestrom Sicherung) < I_{max} (Spannungsversorgung)</td>
</tr>
<tr>
<td>Stützkondensator</td>
<td>Nanotec empfiehlt pro Ampere Nennstrom am Motor eine Kapazität von ca. 1000 µF.</td>
</tr>
</tbody>
</table>

Hinweis

- Für die digitalen Eingänge liegt die Einschaltschwelle bei 1,86 V, die Ausschaltschwelle liegt bei 0,91 V.
- Für die digitalen Eingänge liegt die maximale Abtastfrequenz bei 1 MHz.
- Der Bereich der Analogeingänge ist 0 … 3,3 V.

Tipp

Falls der Sicherungswert (I Auslösestrom Sicherung) sehr nahe an der maximalen Stromaufnahme der Steuerung (I_{max} Steuerung) liegt, sollte eine Auslösecharakteristik *mittel/träge* eingesetzt werden.

3.4 Übertemperaturschutz

Ab einer Temperatur von ca. 75 °C auf der Leistungsplatine wird das Leistungsteil der Steuerung abgeschaltet und das Fehlerbit gesetzt (siehe Objekt 1001_h und 1003_h). Nach Abkühlung und dem Bestätigen des Fehlers (siehe Tabelle für das Contolword, "Fault reset") funktioniert die Steuerung wieder normal.

Die folgenden Ergebnisse von Temperaturtests geben einen Hinweis auf das Temperaturverhalten dieser Steuerung.

Es wurden Temperaturtests unter folgenden Bedingungen durchgeführt:

- Betriebsspannung: 48 V DC
- Motorstrom: 6 A effektiv
- Operationsmodus: Drehzahlmodus Volllast, 30 U/min
- Umgebungstemperatur: 25 °C / 45 °C
- Aufstellhöhe: 500 m über NN
- keine externe Kühlung im Klimaschrank, z.B. über Lüfter

Die folgende Grafik zeigt die Ergebnisse der Temperaturtests:
Zusammenfassung:
Bei 25 °C (+48 V, 6 A effektiv, Drehzahlmodus 30 U/min) ist die Steuerung länger als 2 Stunden in Betrieb gewesen ohne Abschaltung. Die Temperatur war stabil bei ca. 62 °C.

Bei 45 °C (+48 V, 6 A effektiv, Drehzahlmodus 30 U/min) hat der Temperaturschutz die Steuerung in weniger als 2 Minuten abgeschaltet.

Hinweis
Da das genaue Temperaturverhalten außer vom Motor auch von der Anflanschung und dem dortigen Wärmeübergang sowie von der Konvektion in der Applikation abhängt, empfehlen wir bei Applikationen, die hinsichtlich Stromhöhe und Umgebungstemperatur problematisch sind, immer einen Dauertest in der realen Umgebung.

3.5 LED-Signalisierung

3.5.1 Betriebs-LED

Normaler Betrieb
Im normalen Betrieb blinkt die grüne Betriebs-LED einmal in der Sekunde sehr kurz auf.
Fehlerfall

Liegt ein Fehler vor, schaltet die LED auf Rot um und signalisiert eine Fehlernummer. In der folgenden Darstellung wird der Fehler mit der Nummer 3 signalisiert.

 Folgende Tabelle zeigt die Bedeutung der Fehlernummern.

<table>
<thead>
<tr>
<th>Blinktakt</th>
<th>Fehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allgemein</td>
</tr>
<tr>
<td>2</td>
<td>Spannung</td>
</tr>
<tr>
<td>3</td>
<td>Temperatur</td>
</tr>
<tr>
<td>4</td>
<td>Überstrom</td>
</tr>
<tr>
<td>5</td>
<td>Regler</td>
</tr>
<tr>
<td>6</td>
<td>Watchdog-Reset</td>
</tr>
</tbody>
</table>

Hinweis

Für jeden aufgetretenen Fehler wird im Objekt 1003, ein genauerer Fehlercode hinterlegt.
3.6 Anschlussbelegung

Hinweis

- Für die digitalen Eingänge 1 bis 6 liegt die Einschaltschwelle bei 1,86 V, die Ausschaltschwelle liegt bei 0,91 V DC. Die maximale Abtastfrequenz liegt bei 1 MHz. Wenn die I/O PINs als Ausgang verwendet werden (siehe Ein- und Ausgangsbelegung festlegen), ist die Strombelastbarkeit ca. 10 mA bei 3,3 V DC.
- Der Bereich der Analogeingänge ist 0 … 3,3 V DC.
- Das Encoder-Signal ist single-ended, die Einschaltschwelle liegt bei 1,86 V, die Ausschaltschwelle bei 0,91 V DC. Die maximale Abtastfrequenz ist 1 MHz.
- Die Stromaufnahme der Logik-Versorgung UB_LOGIK beträgt ca. 30 mA bei 24 V DC.

PCI-Pin-Belegung:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Beschreibung/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>ENC1_A</td>
<td>Encoder 1, A</td>
</tr>
<tr>
<td>A3</td>
<td>ENC1_B</td>
<td>Encoder 1, B</td>
</tr>
<tr>
<td>A4</td>
<td>ENC1_I</td>
<td>Encoder 1, Index</td>
</tr>
<tr>
<td>A5</td>
<td>ENC1_CAP</td>
<td>nicht benutzt</td>
</tr>
<tr>
<td>A6</td>
<td>HALL_U (H1)</td>
<td>Hallsensor 1 (U)</td>
</tr>
<tr>
<td>A7</td>
<td>HALL_V (H2)</td>
<td>Hallsensor 2 (V)</td>
</tr>
<tr>
<td>A8</td>
<td>HALL_W (H3)</td>
<td>Hallsensor 3 (W)</td>
</tr>
<tr>
<td>A9</td>
<td>ENC2_A</td>
<td>Encoder 2, A</td>
</tr>
<tr>
<td>A10</td>
<td>ENC2_B</td>
<td>Encoder 2, B</td>
</tr>
<tr>
<td>Pin</td>
<td>Name</td>
<td>Beschreibung/Funktion</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>A11</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>ADC_ANALOG_2</td>
<td>Analog Eingang 2: 0 … 3,3 V</td>
</tr>
<tr>
<td>A14</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>A15</td>
<td>SLOT_SPI_MOSI</td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>SLOT_SPI_MISO</td>
<td></td>
</tr>
<tr>
<td>A17</td>
<td>SLOT_SPI_SCK</td>
<td>PDI[6]/EEPROM_Loaded, siehe Anschluss EtherCAT</td>
</tr>
<tr>
<td>A18</td>
<td>SLOT_SPI_CS</td>
<td></td>
</tr>
<tr>
<td>A19</td>
<td>COMM_SPI_MOSI</td>
<td>PDI[2], siehe Anschluss EtherCAT</td>
</tr>
<tr>
<td>A20</td>
<td>COMM_SPI_MISO</td>
<td>PDI[3], siehe Anschluss EtherCAT</td>
</tr>
<tr>
<td>A21</td>
<td>COMM_SPI_SCK</td>
<td>PDI[0], siehe Anschluss EtherCAT</td>
</tr>
<tr>
<td>A22</td>
<td>COMM_SPI_CS</td>
<td>PDI[1], siehe Anschluss EtherCAT</td>
</tr>
<tr>
<td>A23</td>
<td>I2C_SCL_CANRX</td>
<td>EPROM_CLK, siehe Anschluss EtherCAT</td>
</tr>
<tr>
<td>A24</td>
<td>I2C_SDA_CANTX</td>
<td></td>
</tr>
<tr>
<td>A25</td>
<td>n.c.</td>
<td>reserviert</td>
</tr>
<tr>
<td>A26</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>A27</td>
<td>+3.3V_EXT</td>
<td>nicht benutzt</td>
</tr>
<tr>
<td>A28</td>
<td>+14V_EXT</td>
<td>nicht benutzt</td>
</tr>
<tr>
<td>A29</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>A30</td>
<td>BN_OUT</td>
<td>B\ (Schrittmotor)</td>
</tr>
<tr>
<td>A31</td>
<td>BN_OUT</td>
<td></td>
</tr>
<tr>
<td>A32</td>
<td>B_OUT</td>
<td>B\ (Schrittmotor) oder W (BLDC)</td>
</tr>
<tr>
<td>A33</td>
<td>B_OUT</td>
<td></td>
</tr>
<tr>
<td>A34</td>
<td>AN_OUT</td>
<td>A\ (Schrittmotor) oder V (BLDC)</td>
</tr>
<tr>
<td>A35</td>
<td>AN_OUT</td>
<td></td>
</tr>
<tr>
<td>A36</td>
<td>A_OUT</td>
<td>A (Schrittmotor) oder U (BLDC)</td>
</tr>
<tr>
<td>A37</td>
<td>A_OUT</td>
<td></td>
</tr>
<tr>
<td>A38</td>
<td>A_OUT</td>
<td></td>
</tr>
<tr>
<td>A39</td>
<td>A_OUT</td>
<td></td>
</tr>
<tr>
<td>A40</td>
<td>A_OUT</td>
<td></td>
</tr>
<tr>
<td>A41</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>A42</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>A43</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>A44</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>A45</td>
<td>UB_IN</td>
<td>12 … 48 V DC ±4%</td>
</tr>
<tr>
<td>A46</td>
<td>BRAKE_OUT</td>
<td>Ansteuerung der externen Bremse, Open-Drain Output, max. 1 A</td>
</tr>
<tr>
<td>A47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin</td>
<td>Name</td>
<td>Beschreibung/Funktion</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>A49</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>U_REF_ANALOG</td>
<td>3,3 V DC, Referenzspannung für die Analogeingänge</td>
</tr>
<tr>
<td>B3</td>
<td>DIO1_IO_CS</td>
<td>General I/O</td>
</tr>
<tr>
<td>B4</td>
<td>DIO2_CD_CLK</td>
<td>General I/O (Takt-Eingang in Takt-Richtung-Modus)</td>
</tr>
<tr>
<td>B5</td>
<td>DIO3_CD_DIR</td>
<td>General I/O (Richtungseingang in Takt-Richtung-Modus)</td>
</tr>
<tr>
<td>B6</td>
<td>DIO4_IO_MOSI</td>
<td>General I/O</td>
</tr>
<tr>
<td>B7</td>
<td>DIO5_IO_MISO</td>
<td>General I/O</td>
</tr>
<tr>
<td>B8</td>
<td>DIO6_IO_CLK</td>
<td>General I/O</td>
</tr>
<tr>
<td>B9</td>
<td>ENC2_I</td>
<td>Encoder 2, Index</td>
</tr>
<tr>
<td>B10</td>
<td>ENC2_CAP</td>
<td>nicht benutzt</td>
</tr>
<tr>
<td>B11</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>B13</td>
<td>ADC_ANALOG_1</td>
<td>Analog Eingang 1: 0 ... 3,3 V</td>
</tr>
<tr>
<td>B14</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>B15</td>
<td>SPARE_PHY_TX+</td>
<td>reserviert</td>
</tr>
<tr>
<td>B16</td>
<td>SPARE_PHY_TX-</td>
<td>reserviert</td>
</tr>
<tr>
<td>B17</td>
<td>SPARE_PHY_RX+</td>
<td>reserviert</td>
</tr>
<tr>
<td>B18</td>
<td>SPARE_PHY_RX-</td>
<td>reserviert</td>
</tr>
<tr>
<td>B19</td>
<td>SLOT_RESET</td>
<td>Systemfunktion, reserviert</td>
</tr>
<tr>
<td>B20</td>
<td>SLOT_BOOT</td>
<td>Systemfunktion, reserviert</td>
</tr>
<tr>
<td>B21</td>
<td>SLOT_SYNC</td>
<td>Systemfunktion, reserviert</td>
</tr>
<tr>
<td>B22</td>
<td>COMM_RESET</td>
<td>ETHERCAT_RESET, siehe Anschluss EtherCAT</td>
</tr>
<tr>
<td>B23</td>
<td>COMM_SYNC</td>
<td>PDI[4]/SPI_IRQ, siehe Anschluss EtherCAT</td>
</tr>
<tr>
<td>B24</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>B25</td>
<td>n.c.</td>
<td>reserviert</td>
</tr>
<tr>
<td>B26</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>B27</td>
<td>BALLAST</td>
<td>zur Ansteuerung der externen Ballast-Schaltung</td>
</tr>
<tr>
<td>B28</td>
<td>n.c.</td>
<td>reserviert</td>
</tr>
<tr>
<td>B29</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>B30</td>
<td>BN_OUT</td>
<td>B\ (Schrittmotor)</td>
</tr>
<tr>
<td>B31</td>
<td>B_OUT</td>
<td>B (Schrittmotor) oder W (BLDC)</td>
</tr>
<tr>
<td>B32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B33</td>
<td>AN_OUT</td>
<td>A\ (Schrittmotor) oder V (BLDC)</td>
</tr>
<tr>
<td>B34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin</td>
<td>Name</td>
<td>Beschreibung/Funktion</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>B38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B39</td>
<td>A_OUT</td>
<td>A (Schrittmotor) oder U (BLDC)</td>
</tr>
<tr>
<td>B40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B42</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>B43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B45</td>
<td>UB_IN</td>
<td>12 … 48 V DC ±4%</td>
</tr>
<tr>
<td>B46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B48</td>
<td>UB_LOGIK</td>
<td>Externe Logikversorgung, 24 V DC</td>
</tr>
<tr>
<td>B49</td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>
4 Hardware-Installation

Hinweis
Beachten Sie, dass alle Bauteile spannungsfrei sind.

Hinweis
• Das Gerät enthält Bauteile, die empfindlich gegen elektrostatische Entladung sind.
• Unsachgemäßer Umgang kann das Gerät beschädigen.
• Beachten Sie die Grundprinzipien des ESD-Schutzes beim Umgang mit dem Gerät.

4.1 Anschließen der Steuerung
Zum einfachen Anschluss empfiehlt Nanotec das Discovery Board DK-NP5-68. Falls Sie die Steuerung über dieses Discovery Board betreiben, lesen Sie das Kapitel Anschließen der Steuerung NP5 über das Discovery Board.

4.1.1 Integrieren der NP5

Hinweis
• Diese können den Motor und andere Geräte stören. Nanotec empfiehlt folgende Maßnahmen:
 • Geschirmte Leitungen verwenden und den Leitungsschirm beidseitig auf kurzem Weg erden.
 • Kabel mit paarweise verdrillten Adern verwenden.
 • Stromversorgungs- und Motorleitungen so kurz wie möglich halten.
 • Motorgehäuse großflächig auf kurzem Weg erden.
 • Versorgungs-, Motor- und Steuerleitungen getrennt verlegen.

In den nachfolgenden Abbildungen sehen Sie den Schaltplan des Discovery Board NP5, der als Referenz für die Entwicklung Ihres eigenen Motherboards dienen kann. Die Pin-Belegung der PCI-Steckleiste finden Sie im Kapitel Anschlussbelegung.

1. Bereiten Sie Ihr Motherboard vor.

2. Stecken Sie die NP5 in die PCI-Steckverbindung.

4.1.2 Anschluss EtherCAT

Die folgenden Abbildungen zeigen eine Referenzschaltung für den Anschluss der NP5 EtherCAT

Hinweis

Für die Standardbelegung der Anschlüsse, siehe Anschlussbelegung.
NP5_ETHERCAT

Nanotec Electronic GmbH
Kapellenstr. 6
D-85622 Feldkirchen b. München

Technisches Handbuch NP5-20 (EtherCAT)
4 Hardware-Installation

+3.3V

PHY_RESET-S2

SLOT_SPI_SCK-S2

SLOT_SPI_MISO

SLOT_SPI_MOSI

SLOT_SPI_CS

ADC_ANALOG_1

ADC_ANALOG_2

COMM_SPI_SCK-S2

COMM_SPI_MISO-S2

COMM_SPI_MOSI-S2

COMM_SPI_CS-S2

I2CSDA_CANTX-S2

I2CSCL_CANRX-S2

COMM_RESET

COMM_SYNC-S2

I2CSCL_CANRX-S2

I2CSCL_CANRX-S2

COMM_RESET

COMM_RESET
PCI spezielle Pin-Belegung für EtherCAT:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Beschreibung/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>A17</td>
<td>SLOT_SPI_SCK</td>
<td>ROM_Loaded</td>
</tr>
<tr>
<td>A19</td>
<td>COMM_SPI_MOSI</td>
<td>PDI[2]</td>
</tr>
<tr>
<td>A20</td>
<td>COMM_SPI_MISO</td>
<td>PDI[3]</td>
</tr>
<tr>
<td>A21</td>
<td>COMM_SPI_SCK</td>
<td>PDI[0]</td>
</tr>
<tr>
<td>A22</td>
<td>COMM_SPI_CS</td>
<td>PDI[1]</td>
</tr>
<tr>
<td>A23</td>
<td>I2CSCL_CANRX</td>
<td>EPROM_CLK Eingang I² clock</td>
</tr>
<tr>
<td>A24</td>
<td>I2CSDA_CANTX</td>
<td>EPROM_DATA</td>
</tr>
<tr>
<td>22</td>
<td>COMM_RESET</td>
<td>ETHERCAT_RESET</td>
</tr>
<tr>
<td>B23</td>
<td>COMM_SYNC</td>
<td>PDI[4]/SPI_IRQ</td>
</tr>
</tbody>
</table>

1 PDI: Process Data Interface
Anschlussbelegung NP5 PHY Device Configuration

PHY 0 Device Configuration

cable HAB tree node
enable auto-negotiation
broadcast only PHY address 0 enable

PHY address = 000

Full-Duplex
ISOLATE Mode disabled
PHY 1 = off

PHY 0 Device Configuration

cable HAB tree node
enable auto-negotiation
broadcast only PHY address 0 enable

PHY address = 000

Full-Duplex
ISOLATE Mode disabled
PHY 1 = off

Nanotec Electronic GmbH
Kapellenstr. 6
D-85622 Feldkirchen b. München

NP5_ETHERCAT

06.06.2017 16:59
NP5_REF_ETHERCAT (003) 3/3
4.1.3 Anschließen der Steuerung NP5 über das Discovery Board

Das Discovery Board NP5 hilft Ihnen bei Tests und bei der Evaluierung der NP5 Steuerung. Die notwendigen Stecker für das Board werden bereits montiert geliefert.

Der Jumper X13 muss gesetzt sein, wenn CANopen (NP5-08) verwendet wird, sonst müssen Sie ihn entfernen.

Technische Daten - Discovery Board NP5

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Beschreibung/Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsspannung +UB:</td>
<td>12 ... 48 V DC ±5%</td>
</tr>
<tr>
<td>Logik-Spannung +UB_Logic:</td>
<td>24 V DC ±5%</td>
</tr>
<tr>
<td>Stromaufnahme +UB:</td>
<td>max. 100 mA (ohne angeschlossene NP5)</td>
</tr>
<tr>
<td>Stromaufnahme +UB_Logic:</td>
<td>max. 100 mA (ohne angeschlossene NP5)</td>
</tr>
<tr>
<td>Kommunikationsschnittstelle:</td>
<td>SPI, CANopen, EtherCAT</td>
</tr>
<tr>
<td>Analog-Referenzspannung:</td>
<td>3,3 V DC ±5%, max. 10 mA</td>
</tr>
<tr>
<td>Digital-Eingangsspannung:</td>
<td>max. 3,3 V DC</td>
</tr>
<tr>
<td>DC-Ausgangsspannung:</td>
<td>5 V DC ±3%, max. 300 mA</td>
</tr>
<tr>
<td>Statusanzeige:</td>
<td>4x LED grün für GPIO 1 bis 4
2x LED blau für GPIO 5 und GPIO 6
1x LED grün für Discovery Board (+3,3 V DC)</td>
</tr>
<tr>
<td>EtherCAT-EEPROM:</td>
<td>128 Kbit</td>
</tr>
<tr>
<td>Ballast-Widerstand:</td>
<td>15 Ω/5 W</td>
</tr>
<tr>
<td>Befestigungslöcher:</td>
<td>4x Ø 3,2 mm für Discovery Board</td>
</tr>
<tr>
<td>Zusatzplatine EtherCAT:</td>
<td>3x Ø 2,5 mm</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>0,12 kg</td>
</tr>
</tbody>
</table>

Maßzeichnungen - Discovery Board NP5

Die Maße sind in [mm].
Anschlussbelegung - Discovery Board NP5

<table>
<thead>
<tr>
<th>Stecker</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Encoder 1 und Hallsensor</td>
</tr>
<tr>
<td>X2</td>
<td>Bremse</td>
</tr>
<tr>
<td>X3</td>
<td>Motor</td>
</tr>
<tr>
<td>X5</td>
<td>CANopen</td>
</tr>
<tr>
<td>X6</td>
<td>Logik-Spannung</td>
</tr>
<tr>
<td>X7</td>
<td>Spannungsversorgung</td>
</tr>
<tr>
<td>X8</td>
<td>Steckplatz für NP5 Steuerung, siehe auch Maßzeichnungen und Anschlussbelegung</td>
</tr>
<tr>
<td>X9</td>
<td>Encoder 1/2 und Hallsensor</td>
</tr>
<tr>
<td>X10</td>
<td>GPIO und Kommunikationsschnittstelle</td>
</tr>
<tr>
<td>X13</td>
<td>Jumper zum Aktivieren/Deaktivieren der CANopen-Kommunikation</td>
</tr>
<tr>
<td>Stecker</td>
<td>Funktion</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>X14</td>
<td>Flachbandkabelbuchse für EtherCAT-Zusatzplatine</td>
</tr>
<tr>
<td>X15</td>
<td>+5V DC-Ausgang</td>
</tr>
<tr>
<td>P1</td>
<td>Potenziometer für den Analogeingang 1</td>
</tr>
<tr>
<td>P2</td>
<td>Potenziometer für den Analogeingang 2</td>
</tr>
<tr>
<td>SW1 bis SW4</td>
<td>Taster für GPIO 1 bis GPIO 4</td>
</tr>
<tr>
<td>SW5</td>
<td>Reset-Taster für das Discovery Board</td>
</tr>
<tr>
<td>SW6</td>
<td>Schalter für 120 Ohm Terminierungswiderstand (CANopen)</td>
</tr>
<tr>
<td>D1 bis D6</td>
<td>Statusanzeige für GPIO 1 bis GPIO 6</td>
</tr>
<tr>
<td>D7</td>
<td>Statusanzeige für das Discovery Board (+3,3 V DC)</td>
</tr>
<tr>
<td>G1</td>
<td>Erdungsanschluss</td>
</tr>
</tbody>
</table>

Stecker X1 - Encoder 1 und Hallsensor

Der Stecker X1 hat folgende Eigenschaften:

- Stecker-Typ: Phönix Grundleiste, MCV-0,5/8-G-2,5
- Spannungspegel: +5 V Logikpegel
- Strombelastbarkeit: max. 300 mA (zusammen mit +5 V DC Ausgangsspannung auf der Stiftleiste X15)
- Hall-Eingänge: intern durch 2,7 kΩ Pull-up Widerstand an +5 V DC angeschlossen

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hall_U (H1)</td>
</tr>
<tr>
<td>2</td>
<td>Hall_V (H2)</td>
</tr>
<tr>
<td>3</td>
<td>Hall_W (H3)</td>
</tr>
<tr>
<td>4</td>
<td>+5 V DC</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>ENC1_A</td>
</tr>
<tr>
<td>7</td>
<td>ENC1_B</td>
</tr>
<tr>
<td>8</td>
<td>ENC1_I</td>
</tr>
</tbody>
</table>

Stecker X2 - Bremse

Der Stecker X2 hat folgende Eigenschaften:

- Stecker-Typ: Phönix Grundleiste, MCV-0,5/2-G-2,5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bremse + (mit +UB verbunden)</td>
</tr>
<tr>
<td>2</td>
<td>Bremse - (PWM-gesteuerter Open-Drain-Ausgang, max. 1,5 A)</td>
</tr>
</tbody>
</table>

Stecker X3 - Motor

Der Stecker X3 hat folgende Eigenschaften:

- Stecker-Typ: Phönix Grundleiste, MCV-1,5/4-G-3,5
- max. Nennstrom 6A RMS
- max. Spitzenstrom 10A RMS (für 1s)
4 Hardware-Installation

<table>
<thead>
<tr>
<th>Pin</th>
<th>Schrittmotor</th>
<th>BLDC-Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>A\</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>W</td>
</tr>
<tr>
<td>4</td>
<td>B\</td>
<td></td>
</tr>
</tbody>
</table>

Stecker X5 - CANopen
Der Stecker X5 hat folgende Eigenschaften:
- Stecker-Typ: RJ45 Duo Port, liegend

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAN+</td>
</tr>
<tr>
<td>2</td>
<td>CAN-</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>N.C</td>
</tr>
<tr>
<td>5</td>
<td>N.C</td>
</tr>
<tr>
<td>6</td>
<td>CAN_Shield</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>+UB_Logic (24 V DC ±5%)</td>
</tr>
</tbody>
</table>

Stecker X6 - Logik-Spannung
Der Stecker X6 hat folgende Eigenschaften:
- Stecker-Typ: Phönix Grundleiste, MCV-0,5/2-G-2,5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+UB_Logic (24 V DC ±5%)</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
</tbody>
</table>

Stecker X7 - Betriebsspannung
Der Stecker X7 hat folgende Eigenschaften:
- Stecker-Typ: Phönix Grundleiste, MCV-1,5/2-G-3,5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+UB (12…48 V DC ±5%)</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
</tbody>
</table>

Stecker X9 - Encoder und Hallsensoren
Der Stecker X9 hat folgende Eigenschaften:
- Stecker-Typ: Stiftleiste, einreihig, RM 2.54 mm, 12-polig, stehend
- Spannungspegel: +5 V DC Logikpegel

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
</tr>
</tbody>
</table>
Pin Name/Funktion

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ENC1_A</td>
</tr>
<tr>
<td>3</td>
<td>ENC1_B</td>
</tr>
<tr>
<td>4</td>
<td>ENC1_I</td>
</tr>
<tr>
<td>5</td>
<td>ENC1_CAP</td>
</tr>
<tr>
<td>6</td>
<td>ENC2_A</td>
</tr>
<tr>
<td>7</td>
<td>ENC2_B</td>
</tr>
<tr>
<td>8</td>
<td>ENC2_I</td>
</tr>
<tr>
<td>9</td>
<td>ENC2_CAP</td>
</tr>
<tr>
<td>10</td>
<td>Hall_U (H1)</td>
</tr>
<tr>
<td>11</td>
<td>Hall_V (H2)</td>
</tr>
<tr>
<td>12</td>
<td>Hall_W (H3)</td>
</tr>
</tbody>
</table>

Stecker X10 - I/O und Kommunikationsschnittstelle

Der Stecker X10 hat folgende Eigenschaften:

- Stecker-Typ: Stiftleiste, zweireihig, RM 2.54mm, 2x15 polig, stehend

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Typ</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Masse</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>U_REF_ANALOG</td>
<td>Out</td>
<td>Analog-Referenzspannung</td>
</tr>
<tr>
<td>3</td>
<td>DIO1_IO_CS</td>
<td>I/O</td>
<td>General I/O</td>
</tr>
<tr>
<td>4</td>
<td>DIO2_CD_CLK</td>
<td>I/O</td>
<td>General I/O</td>
</tr>
<tr>
<td>5</td>
<td>DIO3_CD_DIR</td>
<td>I/O</td>
<td>General I/O</td>
</tr>
<tr>
<td>6</td>
<td>DIO4_IO_MOSI</td>
<td>I/O</td>
<td>General I/O</td>
</tr>
<tr>
<td>7</td>
<td>DIO5_IO_MISO</td>
<td>I/O</td>
<td>General I/O</td>
</tr>
<tr>
<td>8</td>
<td>DIO6_IO_CLK</td>
<td>I/O</td>
<td>General I/O</td>
</tr>
<tr>
<td>9</td>
<td>ADC_ANALOG_1</td>
<td>In</td>
<td>AD-Wandler 1</td>
</tr>
<tr>
<td>10</td>
<td>ADC_ANALOG_2</td>
<td>In</td>
<td>AD-Wandler 2</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>Masse</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SLOT_SPI_MOSI</td>
<td>-</td>
<td>SPI 1</td>
</tr>
<tr>
<td>13</td>
<td>SLOT_SPI_MISO</td>
<td>-</td>
<td>SPI 1</td>
</tr>
<tr>
<td>14</td>
<td>SLOT_SPI_SCK</td>
<td>-</td>
<td>SPI 1</td>
</tr>
<tr>
<td>15</td>
<td>SLOT_SPI_CS</td>
<td>-</td>
<td>SPI 1</td>
</tr>
<tr>
<td>16</td>
<td>SLOT_SYNC</td>
<td>-</td>
<td>Systemfunktion, reserviert</td>
</tr>
<tr>
<td>17</td>
<td>SLOT_RESET</td>
<td>-</td>
<td>Systemfunktion, reserviert</td>
</tr>
<tr>
<td>18</td>
<td>SLOT_BOOT</td>
<td>-</td>
<td>Systemfunktion, reserviert</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>Masse</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>COMM_RESET</td>
<td>-</td>
<td>Systemfunktion, reserviert</td>
</tr>
<tr>
<td>21</td>
<td>COMM_SYNC</td>
<td>-</td>
<td>Systemfunktion, reserviert</td>
</tr>
<tr>
<td>22</td>
<td>COMM_SPI_MOSI</td>
<td>-</td>
<td>SPI 2</td>
</tr>
<tr>
<td>23</td>
<td>COMM_SPI_MISO</td>
<td>-</td>
<td>SPI 2</td>
</tr>
<tr>
<td>24</td>
<td>COMM_SPI_SCK</td>
<td>-</td>
<td>SPI 2</td>
</tr>
<tr>
<td>25</td>
<td>COMM_SPI_CS</td>
<td>-</td>
<td>SPI 2</td>
</tr>
<tr>
<td>26</td>
<td>GND</td>
<td>Masse</td>
<td></td>
</tr>
<tr>
<td>Pin</td>
<td>Name/Funktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+3,3V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CANopen ON</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stecker X13 - Jumper zum Aktivieren/Deaktivieren der CANopen-Kommunikation

Der Stecker X13 hat folgende Eigenschaften:

- Stecker-Typ: Stiftleiste, RM 2.54mm, 2 polig, stehend
- Mit Jumper gebrückt: CANopen aktiviert
- Mit Jumper nicht gebrückt: CANopen deaktiviert, EtherCAT aktiviert

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>CANopen ON</td>
</tr>
<tr>
<td>28</td>
<td>I2CSCL_CANRX</td>
</tr>
<tr>
<td>29</td>
<td>I2CSDA_CANTX</td>
</tr>
<tr>
<td>30</td>
<td>GND</td>
</tr>
</tbody>
</table>

Stecker X15 - +5V DC Ausgang

Der Stecker X15 hat folgende Eigenschaften:

- Stecker-Typ: Stiftleiste, RM 2.54 mm, 2 polig, stehend
- Strombelastbarkeit: max. 300 mA (zusammen mit +5 V DC Ausgangsspannung auf der Stiftleiste X1)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5 V DC</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
</tbody>
</table>

Erweiterung für EtherCAT (Zusatzplatine)

Das Discovery Board DK-NP5-68 ist mit einer Zusatzplatine für die Kommunikation über EtherCAT ausgestattet.

Maßzeichnungen – Zusatzplatine ETHERCAT
Die Maße sind in [mm].

Hardwareübersicht - Zusatzplatine ETHERCAT

<table>
<thead>
<tr>
<th>Name</th>
<th>Funktion</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>EtherCAT IN</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>EtherCAT OUT</td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td>Verbindung zu Discovery Board NP5</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>Statusanzeige ERROR für EtherCAT</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>Statusanzeige RUN für EtherCAT</td>
<td></td>
</tr>
</tbody>
</table>

Inbetriebnahme EtherCAT über das Discovery Board

Um Verbindung mit der NP5-20 herzustellen, gehen Sie wie folgt vor:

1. Stecken Sie die NP5-20 an X8 ein.
2. Stecken Sie den Jumper X13 ab.
3. Schließen Sie Ihr EtherCAT-Kabel an X1 der EtherCAT-Platine an.
4. Schließen Sie Ihre Versorgungsspannung an X7 an.
5 Inbetriebnahme

In diesem Kapitel wird beschrieben, wie Sie die Kommunikation zur Steuerung aufbauen und die notwendigen Parameter einstellen, damit der Motor betriebsbereit ist.

5.1 Kommunikation aufbauen

5.1.1 EtherCAT

Vor Beginn der Inbetriebnahme wird empfohlen das Kapitel Anschließen der Steuerung durchzulesen.

Software Verbindung

Tipp

Die nachfolgende Beschreibung geht davon aus, dass ein EtherCAT-Master von Beckhoff mit der Software TwinCAT benutzt wird.

1. Verbinden Sie den EtherCAT Master mit der Steuerung, siehe Anschließen der Steuerung.
2. Versorgen Sie die Steuerung mit Spannung.
3. Beschaffen Sie sich die, exakt zur verwendeten Firmware-Version passende, ESI-Datei unter folgenden Quellen:
 b. Vom Nanotec-Support.
4. Schließen Sie den System Manager von TwinCAT falls er geöffnet ist.
5. Kopieren Sie anschließend die ESI-Datei in den Unterordner von TwinCAT:
 - Falls Sie TwinCAT Version 2 benutzen, verwenden Sie den Ordner <TWINCAT INSTALL DIR>/Io/EtherCAT
 - Falls Sie TwinCAT Version 3 benutzen, verwenden Sie den Ordner <TWINCAT INSTALL DIR>/3.1/Config/Io/EtherCAT

Beispiel

Beispiel: Sollte auf Ihrem PC TwinCAT 2 unter dem Pfad C:\TwinCAT\ installiert sein, kopieren Sie die ESI-Datei in den Pfad C:\TwinCAT\Io\EtherCAT.

6. Öffnen Sie die ESI-Datei mit einem Editor. Suchen Sie nach dem Parameter AddInfo. Tragen Sie ein:
 - den Wert "2", falls Sie die Steuerung als Box einbinden möchten (Werkseinstellung)
 - den Wert "0", falls Sie die Steuerung als NC-Axis einbinden möchten

Speichern und schließen Sie die Datei.
52 Motordaten einstellen

Die Steuerung benötigt vor der Inbetriebnahme des Motors einige Werte aus dem Motordatenblatt.

- Polpaarzahl: Objekt 2030h.00h (Pole pair count) Hier ist die Anzahl der Motorpolpaare einzutragen. Bei einem Schrittmotor wird die Polpaarzahl über den Schrittwinkel berechnet, z.B. 1,8° = 50 Polpaare, 0,9° = 100 Polpaare (siehe Schrittwinkel im Motordatenblatt). Bei BLDC-Motoren ist die Polpaarzahl direkt im Motordatenblatt angegeben.

- Motorstrom/Motortyp einstellen:
 - Nur Schrittmotor: Objekt 2031h.00h: Nennstrom (Bipolar) in mA (siehe Motordatenblatt)
 - Objekt 2031h.00h: Nennstrom (Bipolar) in mA (siehe Motordatenblatt)
 - Objekt 3202h.00h (Motor Drive Submode Select): Definiert den Motortyp Schrittmotor, aktiviert die Stromabsenkung bei Stillstand des Motors: 0000008h. Siehe auch Kapitel Inbetriebnahme Open Loop.
 - Nur BLDC-Motor:
 - Objekt 2031h.00h: Spitzenstrom in mA (siehe Motordatenblatt)
 - Objekt 203Bh.01h: Nennstrom in mA (siehe Motordatenblatt)
 - Objekt 203Bh.02h: Maximale Dauer des Spitzenstroms in ms (für eine Erstinbetriebnahme empfiehlt Nanotec einen Wert von 100 Millisekunden; Dieser Wert ist später an die konkrete Applikation anzupassen).
 - Objekt 3202h.00h (Motor Drive Submode Select): Definiert den Motortyp BLDC: 00000041h
 - Motor mit Encoder: Objekt 2059h.00h (Encoder Configuration): Je nach Encoderausführung ist einer der folgenden Werte einzutragen (siehe Motordatenblatt):
 - Versorgungsspannung 5V, differentiell: 00000000h
 - Versorgungsspannung 5V, single-ended: 00000002h
 - Motor mit Bremse: Objekt 3202h.00h (Motor Drive Submode Select): Für die Erstinbetriebnahme wird die Bremsensteuerung aktiviert. Abhängig von der konkreten Applikation kann diese Konfiguration bei Bedarf später wieder deaktiviert werden. Je nach Motortyp ist eines der folgenden Werte einzutragen:
5.3 Motor anschließen

Nach der Einstellung der Motorparameter, siehe Motordaten einstellen, schließen Sie den Motor und ggf. die vorhandenen Sensoren (Encoder/Hallsensoren) und die Bremse an.

- Motor anschließen:
 - an die entsprechenden Pins der PCI-Steckleiste, siehe Anschlussbelegung
 - an X3 des Discovery Boards, falls es verwendet wird, siehe Stecker X3 - Motor
- Encoder/Hallsensoren anschließen:
 - an die entsprechenden Pins der PCI-Steckleiste, siehe Anschlussbelegung
 - an X1 des Discovery Boards, falls es verwendet wird, siehe Stecker X1 - Encoder 1 und Hallsensor
- Bremse anschließen:
 - Minus an Pin A48 der PCI-Steckleiste, siehe Anschlussbelegung
 - Plus an UB_IN der PCI-Steckleiste oder direkt an die Spannungsversorgung, siehe Anschlussbelegung
 - an X2 des Discovery Boards, falls es verwendet wird, siehe Stecker X2 - Bremse

Im Kapitel Automatische Bremsensteuerung wird beschrieben, wie die automatische Bremsensteuerung aktiviert werden kann.

5.4 Auto-Setup

Um einige Parameter im Bezug zum Motor und den angeschlossenen Sensoren (Encoder/Hallsensoren) zu ermitteln, wird ein Auto-Setup durchgeführt. Der Closed Loop-Betrieb setzt ein erfolgreich abgeschlossenes Auto-Setup voraus.

Hinweis

- Beachten Sie die folgenden Voraussetzungen für das Durchführen des Auto-Setups:
 - Der Motor muss lastfrei sein.
 - Der Motor darf nicht berührt werden.
 - Der Motor muss sich frei in beliebige Richtungen drehen können.
 - Es darf kein NanoJ-Programm laufen (Objekt 2300h:00h Bit 0 = "0", siehe 2300h NanoJ Control).

Tipp

Die Ausführung des Auto-Setups benötigt relativ viel Prozessorrechenleistung. Während des Auto-Setups können dadurch eventuell die Feldbusse nicht zeitgerecht bedient werden.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Information zu den Endschaltern, siehe Begrenzung des Bewegungsbereichs.
5.4.1 Parameter-Ermittlung

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alle Motoren unabhängig von der Konfiguration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motortyp (Schrittmotor oder BLDC-Motor)</td>
<td>X</td>
</tr>
<tr>
<td>Wicklungswiderstand</td>
<td>X</td>
</tr>
<tr>
<td>Wicklungsinduktivität</td>
<td>X</td>
</tr>
<tr>
<td>Verkettungsfluss</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Motor ohne Encoder</th>
<th>Motor mit Encoder und Index</th>
<th>Motor mit Encoder ohne Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoderauflösung</td>
<td>-</td>
<td>X</td>
<td>---</td>
</tr>
<tr>
<td>Alignment</td>
<td>-</td>
<td>X</td>
<td>---</td>
</tr>
</tbody>
</table>

(Verschiebung des elektrischen Nullpunkts zum Index.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Motor ohne Hallsensor</th>
<th>Motor mit Hallsensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hallübergänge</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

5.4.2 Durchführung

1. Zum Vorwählen des Betriebsmodus Auto-Setup tragen Sie in das Objekt 6060h:00h den Wert "-2" (="FEh") ein. Die Power state machine muss nun in den Zustand Operation enabled versetzt werden, siehe CiA 402 Power State Machine.

2. Starten Sie das Auto-Setup mit Setzen von Bit 4 OMS im Objekt 6040h:00h (Controlword).
5 Inbetriebnahme

Während der Ausführung des Auto-Setups werden nacheinander folgende Tests und Messungen durchgeführt:

1) Zum Ermitteln der Werte wird die Richtung des Messverfahrens reversiert und die Flankenerkennung erneut ausgewertet.

Der Wert 1 im Bit 12 OMS im Objekt 6041h:00h (Statusword) zeigt an, dass das Auto-Setup vollständig durchgeführt und beendet wurde. Zusätzlich kann über das Bit 10 TARG im Objekt 6041h:00h abgefragt werden, ob ein Encoder-Index gefunden wurde (= “1”) oder nicht (= “0”).
5.4.3 Parameterspeicherung

Nach erfolgreichem Auto-Setup werden die ermittelten Parameterwerte automatisch in die zugehörigen Objekte übernommen und mit dem Speichermechanismus gespeichert, siehe Objekte speichern und 1010h Store Parameters. Benutzt werden die Kategorien Drive 1010h:05h und Tuning 1010h:06h.

VORSICHT

Unkontrollierte Motorbewegungen!

Das interne Koordinatensystem ist nach dem Auto-Setup nicht mehr gültig. Es kann zu unvorhersehbaren Reaktionen kommen.

► Starten Sie das Gerät nach einem Auto-Setup neu. Homing alleine genügt nicht.
6 Generelle Konzepte

6.1 Betriebsarten

6.1.1 Allgemein

Die Betriebsart von Systemen ohne Rückführung wird als *Open Loop*, die mit Rückführung als *Closed Loop* bezeichnet. In der Betriebsart *Closed Loop* ist es zunächst unerheblich, ob die zurückgeführten Signale vom Motor selbst oder aus dem beeinflussten Prozess kommen.

Bei Steuerungen mit Rückführung wird die gemessene Regelgröße (Istwert) permanent mit einer Führungsgröße (Sollwert) verglichen. Bei Abweichungen zwischen diesen Größen regelt die Steuerung entsprechend den vorgegebenen Regelparametern nach.

Dagegen fehlt den reinen Steuerungen die Rückführung der zu regelnden Größe. Die Führungsgröße (Sollwert) wird lediglich vorgegeben.

Neben den physischen Rückführsystemen (beispielsweise über Encoder oder Hallsensoren) kommen auch modellbasierte Rückführsysteme, die alle unter dem Überbegriff Sensorless bekannt sind, zum Einsatz. Beide Rückführsystemen können auch in Kombination eingesetzt werden, um die Qualität der Regelung weiter zu verbessern.

<table>
<thead>
<tr>
<th>Betriebsart</th>
<th>Schrittmotor</th>
<th>BLDC-Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Loop</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Closed Loop</td>
<td>ja</td>
<td>ja</td>
</tr>
</tbody>
</table>

Technisches Handbuch NP5-20 (EtherCAT)
6 Generelle Konzepte

<table>
<thead>
<tr>
<th>Rückführung</th>
<th>Schrittmotor</th>
<th>BLDC-Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall</td>
<td>nein</td>
<td>ja</td>
</tr>
<tr>
<td>Encoder</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Sensorless</td>
<td>ja</td>
<td>ja</td>
</tr>
</tbody>
</table>

In Abhängigkeit der Betriebsart können verschiedene Betriebsmodi angewendet werden. Die nachfolgende Liste fasst alle Betriebsmodi, die in den verschiedenen Betriebsarten möglich sind, zusammen.

<table>
<thead>
<tr>
<th>Betriebsmodus</th>
<th>Betriebsart</th>
<th>Open Loop</th>
<th>Closed Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile Position</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Profile Velocity</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Profile Torque</td>
<td>nein¹)</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Homing</td>
<td>ja²)</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Interpolated Position Mode</td>
<td>ja³)</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Cyclic Synchronous Position</td>
<td>ja³)</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Cyclic Synchronous Velocity</td>
<td>ja³)</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Cyclic Synchronous Torque</td>
<td>nein¹)</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Takt-Richtung</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
</tbody>
</table>

¹) Die Drehmoment-Betriebsmodi Profile Torque und Cyclic Synchronous Torque sind in der Betriebsart Open Loop aufgrund einer fehlenden Rückführung nicht möglich.
²) Ausnahme: Homing auf Block ist aufgrund einer fehlenden Rückführung nicht möglich.

6.1.2 Open Loop

Einführung

Die Betriebsart Open Loop wird nur bei Schrittmotoren angewendet und ist ein reiner Stellbetrieb. Die Felddrehung im Stator wird durch die Steuerung vorgegeben. Der Rotor folgt der magnetischen Felddrehung ohne Schrittverluste unmittelbar, solange keine Grenzparameter - wie beispielsweise das maximal mögliche Drehmoment - überschritten werden. Im Vergleich zum Closed Loop werden keine komplexen internen Regelungsprozesse in der Steuerung benötigt. Dadurch sind die Anforderungen an die Steuerungshardware wie auch an die Steuerungslogik sehr gering. Im Besonderen bei preissensitiven Anwendungen und einfachen Bewegungsaufgaben wird deshalb die Betriebsart Open Loop vorwiegend eingesetzt.

Da es im Gegensatz zu Closed Loop keine Rückkopplung über die aktuelle Rotorposition gibt, kann auch kein Rückschluss auf das an der Abtriebsseite der Motorwelle anstehende Gegenmoment gezogen werden. Um eventuell an der Abtriebswelle des Motors auftretende Drehmomentsschwankungen auszugleichen, liefert die Steuerung in der Betriebsart Open Loop über den gesamten Drehzahlbereich immer den maximal möglichen (bzw. durch Parameter vorgegebenen) eingestellten Strom an die Statorwicklungen. Die dadurch erzeugte hohe magnetische Feldstärke zwingt den Rotor, in kürzester Zeit den neuen Beharrungszustand einzunehmen. Diesem Moment
steht jedoch das Trägheitsmoment des Rotors entgegen. Unter bestimmten Betriebsbedingungen neigt diese Kombination zu Resonanzen, vergleichbar einem Feder-Masse-System.

Inbetriebnahme

Um die Betriebsart *Open Loop* anzuwenden, sind folgende Einstellungen notwendig:

- Im Objekt 2030\(_h\) (Pole Pair Count) die Polpaarzahl eingeben (siehe Motordatenblatt: Ein Schrittwinkel von 1,8° entspricht bei einem Schrittmotor mit 2 Phasen 50 Polpaaren und von 0,9° entspricht 100 Polpaaren).
- Im Objekt 2031\(_h\) (Max Current) den Maximalstrom in mA eingeben (siehe Motordatenblatt).
- Im Objekt 3202\(_h\) (Motor Drive Submode Select) das Bit 0 (CL/OL) mit dem Wert "0" belegen.
- Soll der Takt-Richtungs-Modus angewendet werden, dann Kapitel *Takt-Richtungs-Modus* berücksichtigen.

Bei Bedarf sollte die Stromabsenkung bei Stillstand des Motors aktiviert werden, um die Verlustleistung und Wärmeentwicklung zu reduzieren. Um die Stromabsenkung zu aktivieren, sind folgende Einstellungen notwendig:

- Im Objekt 3202\(_h\) (Motor Drive Submode Select) das Bit 3 (CurRed) auf "1" setzen.
- Im Objekt 2036\(_h\) (Open Loop Current Reduction Idle Time) wird die Zeit in Millisekunden angegeben, die sich der Motor im Stillstand befinden muss, bis die Stromabsenkung aktiviert wird.
- Im Objekt 2037\(_h\) (Open Loop Current Reduction Value/factor) wird der Effektivwert angegeben, auf den der Nennstrom reduziert werden soll, wenn die Stromabsenkung im *Open Loop* aktiviert wird und sich der Motor im Stillstand befindet.

Optimierungen

Systembedingt können in der Betriebsart *Open Loop* Resonanzen auftreten, besonders bei geringer Belastung ist die Resonanzneigung hoch. Aus praktischen Erfahrungen heraus haben sich in Abhängigkeit der Applikation verschiedene Maßnahmen bewährt, um Resonanzen weitgehend zu reduzieren:

- Strom reduzieren oder erhöhen, siehe Objekt 2031\(_h\) (Max Current). Zu hohe Drehmomentreserve begünstigt Resonanzen.
- Die Betriebsspannung unter Berücksichtigung der produktspezifisch zugelassenen Bereiche reduzieren (bei genügender Drehmomentreserve) oder erhöhen. Der zulässige Betriebsspannungsbereich kann dem Produktdatenblatt entnommen werden.
- Die Regelparameter des Stromreglers über die Objekte 3210\(_h\):09\(_h\) (I\(_P\)) und 3210\(_h\):0A\(_h\) (I\(_I\)) optimieren.
- Anpassen der Beschleunigung, Verzögerung und/oder Zielgeschwindigkeit in Abhängigkeit des gewählten Betriebsmodus:
 - **Betriebsmodus Profile Position**
 Objekte 6083\(_h\) (Profile Acceleration), 6084\(_h\) (Profile Deceleration) und 6081\(_h\) (Profile Velocity).
 - **Betriebsmodus Velocity**
 Objekte 6048\(_h\) (Velocity Acceleration), 6049\(_h\) (Velocity Deceleration) und 6042\(_h\) (Target Velocity).
 - **Betriebsmodus Profile Velocity**
 Objekte 6083\(_h\) (Profile Acceleration), 6084\(_h\) (Profile Deceleration) und 6081\(_h\) (Profile Velocity).
 - **Betriebsmodus Homing**
 Objekte 609A\(_h\) (Homing Acceleration), 6099\(_h\):01\(_h\) (Speed During Search For Switch) und 6099\(_h\):02\(_h\) (Speed During Search For Zero).
Betriebsmodus Interpolated Position Mode
Mit der übergeordneten Steuerung können die Beschleunigungs- und Verzögerungsrampen beeinflusst werden.

Betriebsmodus Cycle Synchronous Position
Über die externen Zielvorgaben "Positionsangabe/Zeiteinheit" können die Beschleunigungs- und Verzögerungsrampen beeinflusst werden.

Betriebsmodus Cycle Synchronous Velocity
Über die externen Zielvorgaben "Positionsangabe/Zeiteinheit" können die Beschleunigungs- und Verzögerungsrampen beeinflusst werden.

Betriebsmodus Takt-Richtung
Änderung der Schrittauflösung über die Objekte 2057_h (Clock Direction Multiplier) und 2058_h (Clock Direction Divider). Beschleunigungs-/Verzögerungsrampen durch Anpassen der Impulsfrequenz optimieren, um den Resonanzbereich möglichst schnell zu durchlaufen.

6.1.3 Closed Loop

Einführung

Die *Closed Loop*-Theorie geht auf die Vorstellung eines Regelkreises zurück. Eine am System einwirkende Störfrequenz soll möglichst schnell und ohne bleibende Abweichung ausgeglichen werden, um die Regelgröße wieder an die Führungsgröße anzuleiten.

Closed Loop am Beispiel einer Drehzahlregelung:

![Diagramm](image)

- **Führungsgröße** Soll-Drehzahl
- **Regler** PI$_i$, PI$_v$
- **Stellglied** Stromhöhe-/winkel
- **Regelgröße** Ist-Drehzahl
- **Störung** Drehmoment-/schwankungen
- **I_{ist}** = Aktueller Strom
- **V_{ist}** = Aktuelle Drehzahl

$\text{PI}_i = \text{Proportional-/Integralregler Stromregelkreis}$
$\text{PI}_v = \text{Proportional-/Integralregler Drehzahlregelkreis}$

Alle Steuerungen von Nanotec, welche die Betriebsart *Closed Loop* unterstützen, implementieren eine feldorientierte Regelung mit einer sinuskommutierten Stromregelung. Die Schrittmotoren und BLDC-Motoren werden also genauso geregelt wie ein Servomotor. Mit der Betriebsart *Closed Loop* können Schrittwinkelfehler während der Fahrt kompensiert und Lastwinkelfehler innerhalb eines Vollschritts korrigiert werden.

Inbetriebnahme

Vor dem Anwenden der Betriebsart *Closed Loop* muss ein Auto-Setup durchgeführt werden. Der Betriebsmodus Auto-Setup ermittelt automatisch die notwendigen Parameter (z.B. Motorkenndaten, Rückführsysteme), welche für eine optimale Arbeitsweise der feldorientierten Regelung notwendig sind. Alle Informationen zur Durchführung des Auto-Setups sind im Kapitel *Auto-Setup* beschrieben.

Um die Betriebsart *Closed Loop* anzuwenden, sind je nach Motortyp und Rückführung bestimmte Einstellungen notwendig, siehe Kapitel *Motordaten einstellen*.

Das Bit 0 im \textbf{3202} muss gesetzt sein.

6.2 CiA 402 Power State Machine

6.2.1 Zustandsmaschine

CiA 402

Controlword

Zustandsänderungen werden über Objekt \textbf{6040} (Controlword) angefordert.

Zustandsübergänge

Das Diagramm zeigt die möglichen Zustandsübergänge.
Not ready to switch on
Switched on disabled
Ready to switch on
Switched on
Operation enabled
Quick stop active
Fault
Fault reaction active
Low-level power
Spannung für Controller zugeschaltet
High-level Spannung kann zugeschaltet werden

High-level power
Spannung für Controller zugeschaltet
Kein Drehmoment am Motor
Torque
Spannung für Controller zugeschaltet
High-level Spannung zugeschaltet

In der nachfolgenden Tabelle sind die Bit-Kombinationen für das Controlword aufgelistet, die zu den entsprechenden Zustandsübergängen führen. Ein X entspricht dabei einem nicht weiter zu berücksichtigenden Bit-Zustand. Einzige Ausnahme ist das Rücksetzen des Fehlers (Fault reset): Der Übergang wird nur durch steigende Flanke des Bits angefordert.

<table>
<thead>
<tr>
<th>Kommando</th>
<th>Bit im Objekt 6040h</th>
<th>Übergang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown</td>
<td>Bit 7</td>
<td>Bit 3</td>
</tr>
<tr>
<td>Switch on</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>Disable voltage</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>Quick stop</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>Disable operation</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Enable operation</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fault reset</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Statusword

In der nachfolgenden Tabelle sind die Bitmasken aufgelistet, die den Zustand der Steuerung aufschlüsseln.

<table>
<thead>
<tr>
<th>Statusword (6041h)</th>
<th>Zustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx xxxx x0xx 0000</td>
<td>Not ready to switch on</td>
</tr>
<tr>
<td>xxxx xxxx x1xx 0000</td>
<td>Switch on disabled</td>
</tr>
<tr>
<td>xxxx xxxx x01x 0001</td>
<td>Ready to switch on</td>
</tr>
<tr>
<td>xxxx xxxx x01x 0011</td>
<td>Switched on</td>
</tr>
<tr>
<td>xxxx xxxx x01x 0111</td>
<td>Operation enabled</td>
</tr>
<tr>
<td>xxxx xxxx x00x 0111</td>
<td>Quick stop active</td>
</tr>
<tr>
<td>xxxx xxxx x0xx 1111</td>
<td>Fault reaction active</td>
</tr>
<tr>
<td>xxxx xxxx x0xx 1000</td>
<td>Fault</td>
</tr>
</tbody>
</table>

Die Steuerung erreicht nach Einschalten und erfolgreichem Selbsttest den Zustand *Switch on disabled*.

Hinweis

Tritt ein nicht behebbarer Fehler auf, wechselt die Steuerung in den Zustand *Not ready to switch on* und verbleibt dort.

Außerdem kann dieser Zustand durch einen Busfehler mit dem Feldbusotyp EtherCAT erreicht werden. In diesem Fall wird – nachdem der Busfehler behoben ist – automatisch wieder in den Zustand *Switch on disabled* gewechselt.

Betriebsmodus

Der Betriebsmodus wird im Objekt 6060h eingestellt. Der tatsächlich aktive Betriebsmodus wird im 6061h angezeigt.

Die Einstellung oder Änderung des Betriebsmodus ist jederzeit möglich.

6.2.2 Verhalten beim Verlassen des Zustands Operation enabled

Bremsreaktionen

Beim Verlassen des Zustands *Operation enabled* lassen sich unterschiedliche Bremsreaktionen programmieren.

Die nachfolgende Grafik zeigt eine Übersicht der Bremsreaktionen.
Quick stop active

Übergang in den Zustand *Quick stop active* (quick stop option):

In diesem Fall wird die in Objekt 605A\textsubscript{h} hinterlegte Aktion ausgeführt (siehe nachfolgende Tabelle).

<table>
<thead>
<tr>
<th>Wert in Objekt 605A\textsubscript{h}</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768 bis -1</td>
<td>Reserviert</td>
</tr>
<tr>
<td>0</td>
<td>Soforthalt</td>
</tr>
<tr>
<td>1</td>
<td>Abbremsen mit slow down ramp (Bremsbeschleunigung je nach Betriebsmodus) und anschließendem Zustandswechsel in Switch on disabled</td>
</tr>
<tr>
<td>2</td>
<td>Abbremsen mit quick stop ramp und anschließendem Zustandswechsel in Switch on disabled</td>
</tr>
<tr>
<td>3 bis 32767</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>
Ready to switch on

Übergang in den Zustand Ready to switch on (shutdown option):

In diesem Fall wird die in Objekt 605B\textsubscript{h} hinterlegte Aktion ausgeführt (siehe nachfolgende Tabelle).

<table>
<thead>
<tr>
<th>Wert in Objekt 605B\textsubscript{h}</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768 bis -1</td>
<td>Reserviert</td>
</tr>
<tr>
<td>0</td>
<td>Soforthalt</td>
</tr>
<tr>
<td>1</td>
<td>Abbremsen mit slow down ramp (Bremsbeschleunigung je nach Betriebsmodus) und anschließendem Zustandswechsel in Switch on disabled</td>
</tr>
<tr>
<td>2 bis 32767</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

Switched on

Übergang in den Zustand Switched on (disable operation option):

In diesem Fall wird die in Objekt 605C\textsubscript{h} hinterlegte Aktion ausgeführt (siehe nachfolgende Tabelle).

<table>
<thead>
<tr>
<th>Wert in Objekt 605C\textsubscript{h}</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768 bis -1</td>
<td>Reserviert</td>
</tr>
<tr>
<td>0</td>
<td>Soforthalt</td>
</tr>
<tr>
<td>1</td>
<td>Abbremsen mit slow down ramp (Bremsbeschleunigung je nach Betriebsmodus) und anschließendem Zustandswechsel in Switch on disabled</td>
</tr>
<tr>
<td>2 bis 32767</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

Halt

Das Bit ist gültig in folgenden Modi:

- Profile Position
- Velocity
- Profile Velocity
- Profile Torque
- Interpolated Position Mode

Beim Setzen des Bit 8 in Objekt 6040\textsubscript{h} (Controlword) wird die in 605D\textsubscript{h} hinterlegte Reaktion ausgeführt (siehe nachfolgende Tabelle):

<table>
<thead>
<tr>
<th>Wert in Objekt 605D\textsubscript{h}</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768 bis 0</td>
<td>Reserviert</td>
</tr>
<tr>
<td>1</td>
<td>Abbremsen mit slow down ramp (Bremsbeschleunigung je nach Betriebsmodus)</td>
</tr>
<tr>
<td>2</td>
<td>Abbremsen mit quick stop ramp (Bremsbeschleunigung je nach Betriebsmodus)</td>
</tr>
<tr>
<td>3 bis 32767</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

Fault

Fehlerfall (fault):

Sollte ein Fehler auftreten, wird der Motor abgebremst, wie es in Objekt 605E\textsubscript{h} hinterlegt ist.
6 Generelle Konzepte

<table>
<thead>
<tr>
<th>Wert in Objekt 605E<sub>h</sub></th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768 bis -1</td>
<td>Reserviert</td>
</tr>
<tr>
<td>0</td>
<td>Soforthalt</td>
</tr>
<tr>
<td>1</td>
<td>Abbremsen mit slow down ramp (Bremsbeschleunigung je nach Betriebsart)</td>
</tr>
<tr>
<td>2</td>
<td>Abbremsen mit quick stop ramp (Bremsbeschleunigung je nach Betriebsart)</td>
</tr>
<tr>
<td>3 bis 32767</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

Schlepp-/Schlupf Fehler

Sollte ein Schlepp- oder Schlupffehler auftreten, wird der Motor abgebremst, wie es in Objekt 3700_h hinterlegt ist.

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768 bis -1</td>
<td>Reserviert</td>
</tr>
<tr>
<td>0</td>
<td>Soforthalt</td>
</tr>
<tr>
<td>1</td>
<td>Abbremsen mit slow down ramp (Bremsbeschleunigung je nach Betriebsart)</td>
</tr>
<tr>
<td>2</td>
<td>Abbremsen mit quick stop ramp (Bremsbeschleunigung je nach Betriebsart)</td>
</tr>
<tr>
<td>3 bis 32767</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

Sie können die Fehlerüberwachung deaktivieren, indem Sie das Objekt 6065_h auf den Wert "-1" (FFFFFFF_h), bzw. das Objekt 60F8_h auf den Wert "7FFFFFFF_h" setzen.

6.3 Benutzerdefinierte Einheiten

Die Steuerung bietet Ihnen die Möglichkeit, benutzerdefinierte Einheiten einzustellen. Damit lassen sich die entsprechenden Parameter z. B. direkt in Grad [°], Millimeter [mm], usw. setzen und auslesen.

Sie können auch, entsprechend den mechanischen Gegebenheiten, eine Getriebeübersetzung und/oder eine Vorschubkonstante einstellen.
6.3.1 Einheiten

Es werden sowohl Einheiten des internationalen Einheitensystems (SI) als auch einige spezifische Einheiten unterstützt. Ebenfalls möglich ist die Angabe einer Zehnerpotenz als Faktor.

In der nachfolgenden Tabelle sind alle unterstützten Einheiten für die Position und deren Werte für 60A8h (Positionseinheit) bzw. 60A9h (Geschwindigkeitseinheit) aufgelistet. Abhängig von der verwendeten Einheit wird die Vorschubkonstante (6092h) und/oder die Getriebeübersetzung (6091h) berücksichtigt.

<table>
<thead>
<tr>
<th>Name</th>
<th>Einheitenzeichen</th>
<th>Wert</th>
<th>6091h</th>
<th>6092h</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>metre</td>
<td>m</td>
<td>01h</td>
<td>ja</td>
<td>ja</td>
<td>Meter</td>
</tr>
<tr>
<td>inch</td>
<td>in</td>
<td>C1h</td>
<td>ja</td>
<td>ja</td>
<td>Zoll (=0,0254 m)</td>
</tr>
<tr>
<td>foot</td>
<td>ft</td>
<td>C2h</td>
<td>ja</td>
<td>ja</td>
<td>Fuß (=0,3048 m)</td>
</tr>
<tr>
<td>grade</td>
<td>g</td>
<td>40h</td>
<td>ja</td>
<td>nein</td>
<td>Gon (Winkeleinheit, 400 entsprechen 360°)</td>
</tr>
<tr>
<td>radian</td>
<td>rad</td>
<td>10h</td>
<td>ja</td>
<td>nein</td>
<td>Radiant</td>
</tr>
<tr>
<td>degree</td>
<td>°</td>
<td>41h</td>
<td>ja</td>
<td>nein</td>
<td>Grad</td>
</tr>
<tr>
<td>arcminute</td>
<td>´</td>
<td>42h</td>
<td>ja</td>
<td>nein</td>
<td>Winkelminute (60°=1°)</td>
</tr>
<tr>
<td>arcsecond</td>
<td>"</td>
<td>43h</td>
<td>ja</td>
<td>nein</td>
<td>Winkelsekunde (60"=1")</td>
</tr>
</tbody>
</table>

Hinweis

Wertänderungen aller Objekte, die in diesem Kapitel beschrieben werden, werden im Zustand **Operation enabled** der CiA 402 Power State Machine nicht sofort angewendet. Der Zustand **Operation enabled** muss dazu verlassen werden.
6.3.2 Encoderauflösung

Die physikalische Auflösung des verwendeten Encoders/Sensors berechnet sich aus den Encoder-Inkrementen \((608F_{h};1_{h}\text{ (Encoder Increments)})\) pro Motorumdrehungen \((608F_{h};2_{h}\text{ (Motor Revolutions)})\):

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Exponent</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^6)</td>
<td>6</td>
<td>(06_{h})</td>
</tr>
<tr>
<td>(10^5)</td>
<td>5</td>
<td>(05_{h})</td>
</tr>
<tr>
<td>(10^1)</td>
<td>1</td>
<td>(01_{h})</td>
</tr>
<tr>
<td>(10^0)</td>
<td>0</td>
<td>(00_{h})</td>
</tr>
<tr>
<td>(10^{-1})</td>
<td>-1</td>
<td>(FF_{h})</td>
</tr>
<tr>
<td>(10^{-5})</td>
<td>-5</td>
<td>(FB_{h})</td>
</tr>
<tr>
<td>(10^{-6})</td>
<td>-6</td>
<td>(FA_{h})</td>
</tr>
</tbody>
</table>

In der nachfolgenden Tabelle sind alle unterstützten Einheiten für die Zeit und deren Werte für \(60A9_{h}\) (Geschwindigkeitseinheit) aufgelistet:

<table>
<thead>
<tr>
<th>Name</th>
<th>Einheitenzeichen</th>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>second</td>
<td>s</td>
<td>(03_{h})</td>
<td>Sekunde</td>
</tr>
<tr>
<td>minute</td>
<td>min</td>
<td>(47_{h})</td>
<td>Minute</td>
</tr>
<tr>
<td>hour</td>
<td>h</td>
<td>(48_{h})</td>
<td>Stunde</td>
</tr>
<tr>
<td>day</td>
<td>d</td>
<td>(49_{h})</td>
<td>Tag</td>
</tr>
<tr>
<td>year</td>
<td>a</td>
<td>(4A_{h})</td>
<td>Jahr (=365,25 Tage)</td>
</tr>
</tbody>
</table>

In der nachfolgenden Tabelle sind die möglichen Exponenten und deren Werte für \(60A8_{h}\) (Positionseinheit), bzw. \(60A9_{h}\) (Geschwindigkeitseinheit) aufgelistet:

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Exponent</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^6)</td>
<td>6</td>
<td>(06_{h})</td>
</tr>
<tr>
<td>(10^5)</td>
<td>5</td>
<td>(05_{h})</td>
</tr>
<tr>
<td>(10^1)</td>
<td>1</td>
<td>(01_{h})</td>
</tr>
<tr>
<td>(10^0)</td>
<td>0</td>
<td>(00_{h})</td>
</tr>
<tr>
<td>(10^{-1})</td>
<td>-1</td>
<td>(FF_{h})</td>
</tr>
<tr>
<td>(10^{-5})</td>
<td>-5</td>
<td>(FB_{h})</td>
</tr>
<tr>
<td>(10^{-6})</td>
<td>-6</td>
<td>(FA_{h})</td>
</tr>
</tbody>
</table>
6.3.3 Getriebeübersetzung

Die Getriebeübersetzung berechnet sich aus Motorumdrehungen (6091\textsubscript{h}:1 (Motor Revolutions)) pro Achsenumdrehung (6091\textsubscript{h}:2 (Shaft Revolutions)) wie folgt:

$$\text{Getriebeübersetzung} = \frac{\text{Motorumdrehung (6091\textsubscript{h}:1)}}{\text{Achsenumdrehung (6091\textsubscript{h}:2)}}$$

6.3.4 Vorschubkonstante

Die Vorschubkonstante berechnet sich aus dem Vorschub (6092\textsubscript{h}:1 (Feed) pro Umdrehung der Abtriebsachse (6092\textsubscript{h}:2 (Shaft Revolutions)) wie folgt:

$$\text{Vorschubkonstante} = \frac{\text{Vorschub (6092\textsubscript{h}:01)}}{\text{Umdrehung der Abtriebswelle (6092\textsubscript{h}:02)}}$$

Die Vorschubkonstante ist zur Angabe der Spindelsteigung bei einer Linearachse nützlich und wird verwendet, wenn die Einheit auf Längenmaßen basiert oder wenn diese dimensionslos ist.

6.3.5 Berechnungsformeln für Benutzereinheiten

Positionseinheit

Das Objekt 60A8\textsubscript{h} enthält:
- Bits 16 bis 23: die Positionseinheit (siehe Kapitel Einheiten)
- Bits 24 bis 31: den Exponenten einer Zehnerpotenz (siehe Kapitel Einheiten)

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Exponent einer Zehnerpotenz</td>
<td>Einheit</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>reserviert (00h)</td>
<td>reserviert (00h)</td>
<td></td>
</tr>
</tbody>
</table>

Beispiel

Wird 60A8\textsubscript{h} mit dem Wert "FF410000\textsubscript{h}" beschrieben (Bits 16-23=41\textsubscript{h} und Bits 24-31=FF\textsubscript{h}), wird die Einheit auf \textit{Zehntelgrad} eingestellt (Werkseinstellung).

Bei einer relativen Zielposition (607A\textsubscript{h}) von 3600 fährt der Motor genau eine mechanische Umdrehung, wenn die \textit{Getriebeübersetzung} 1:1 ist. Die \textit{Vorschubkonstante} spielt in diesem Fall keine Rolle.

Beispiel

Wird 60A8\textsubscript{h} mit dem Wert "FD010000\textsubscript{h}" beschrieben (Bits 16-23=01\textsubscript{h} und Bits 24-31=FD\textsubscript{h}(-3)), wird die Einheit auf \textit{Millimeter} eingestellt.

Bei einer relativen Zielposition (607A\textsubscript{h}) von 1 fährt der Motor genau eine mechanische Umdrehung (wenn die \textit{Getriebeübersetzung} und \textit{Vorschubkonstante} 1:1 sind).
Wird die **Vorschubkonstante** entsprechend der Spindelsteigung einer Linearachse eingestellt, dreht der Motor so weit, dass ein Vorschub von 1 mm erreicht wird.

Geschwindigkeitseinheit

Das Objekt **60A9** enthält:

- Bits 8 bis 15: die Zeiteinheit (siehe Kapitel **Einheiten**)
- Bits 16 bis 23: die Positionseinheit (siehe Kapitel **Einheiten**)
- Bits 24 bis 31: den Exponenten einer Zehnerpotenz (siehe Kapitel **Einheiten**)

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exponent einer Zehnerpotenz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Positionseinheit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Zeiteinheit</td>
<td>reserviert (00h)</td>
<td></td>
</tr>
</tbody>
</table>

Beispiel

Wird **60A9** mit dem Wert "00B44700h" beschrieben (Bits 8-15=00h, Bits 16-23=B4h und Bits 24-31=47h), wird die Einheit auf **Umdrehungen pro Minute** eingestellt (Werkseinstellung).

Beispiel

Wird das **60A9**, mit dem Wert "FD010300h" beschrieben (Bits 8-15=FDh (-3), Bits 16-23=01h und Bits 24-31=03h), wird die Einheit auf **Millimeter pro Sekunde** eingestellt.

Hinweis

Die Geschwindigkeitseinheit im Modus **Velocity** ist auf **Umdrehungen pro Minute** voreingestellt. Sie können die Einheit nur über den **604Ch VI Dimension Factor** umstellen.

Umrechnungsfaktor für die Geschwindigkeitseinheit

Sie können einen zusätzlichen Faktor für die Geschwindigkeitseinheit einstellen, damit z.B. eine Einheit von 1/3 Umdrehungen/Minute möglich ist. Der Faktor n errechnet sich aus Faktor für Zähler (**6096h:**01h) geteilt durch Faktor für Nenner (**6096h:**02h).

\[
\text{n}_{\text{Geschwindigkeitseinheit}} = \frac{6096h_{:01}}{6096h_{:02}}
\]

Beschleunigungseinheit

Die Beschleunigungseinheit ist **Geschwindigkeitseinheit** pro Sekunde.

Umrechnungsfaktor für die Beschleunigungseinheit

Der Faktor n für die Beschleunigungseinheit errechnet sich aus Zähler (**6097h:**01h) geteilt durch Nenner (**6097h:**02h).
6.4 Begrenzung des Bewegungsbereichs

Die digitalen Eingänge können als Endschalter verwendet werden, im Kapitel Digitale Eingänge wird beschrieben, wie Sie diese Funktion der Eingänge aktivieren. Die Steuerung unterstützt auch Software-Endschalter.

6.4.1 Toleranzbänder der Endschalter

Das vorherige Bild stellt die Aufteilung der Toleranzbänder neben den Endschaltern dar:
- Die Toleranzzone beginnt unmittelbar nach dem Endschalter. In dieser Zone kann frei gefahren werden. Die Länge der Zone kann in dem Objekt 2056h eingestellt werden.
- Falls der Motor in den verbotenen Bereich fährt, löst die Steuerung einen Soforthalt aus und es wird in den Zustand Fault gewechselt, siehe auch Zustandsübergänge.

6.4.2 Software-Endschalter

Die Steuerung berücksichtigt Software-Endschalter (607Dh (Software Position Limit)). Zielpositionen (607Ah) werden durch 607Dh limitiert, die absolute Zielposition darf nicht größer sein als die Grenzen in 607Dh. Sollte sich der Motor beim Einrichten der Endschalter außerhalb des zulässigen Bereichs befinden, werden nur Fahrbefehle in Richtung des zulässigen Bereichs angenommen.

6.5 Zykluszeiten

Die Steuerung arbeitet mit einer Zykluszeit von 1 ms. Das bedeutet, dass Daten jeweils alle 1 ms verarbeitet werden, mehrfache Änderungen eines Wertes (z.B. Wert eines Objektes oder Pegel an einem digitalen Eingang) innerhalb einer ms können nicht erfasst werden.

In der nachfolgenden Tabelle finden Sie eine Übersicht der Zykluszeiten der verschiedenen Prozesse.
<table>
<thead>
<tr>
<th>Task</th>
<th>Zykluszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applikation</td>
<td>1 ms</td>
</tr>
<tr>
<td>NanoJ Applikation</td>
<td>1 ms</td>
</tr>
<tr>
<td>Stromregler</td>
<td>31,25 µs (32 KHz)</td>
</tr>
<tr>
<td>Geschwindigkeitsregler</td>
<td>250 µs (4 KHz)</td>
</tr>
<tr>
<td>Positionsregler</td>
<td>1 ms</td>
</tr>
</tbody>
</table>
7 Betriebsmodi

7.1 Profile Position

7.1.1 Übersicht

Beschreibung

Der **Profile Position Mode** dient dazu, Positionen relativ zur letzten Zielposition oder absolut zur letzten Referenzposition anzufahren. Während der Bewegung werden Grenzwerte für die Geschwindigkeit, Anfahr- und Bremsbeschleunigung und Rucke berücksichtigt.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe **Begrenzung des Bewegungsbereichs**.

Aktivierung

Um den Modus zu aktivieren, muss im Objekt **6060** (Modes Of Operation) der Wert "1" gesetzt werden (siehe **CiA 402 Power State Machine**).

Controlword

Folgende Bits im Objekt **6040** (Controlword) haben eine gesonderte Funktion:

- Bit 4 startet einen Fahrauftrag. Dieser wird bei einem Übergang von "0" nach "1" übernommen. Eine Ausnahme besteht, wenn es von einem anderen Betriebsmodus nach **Profile Position** gewechselt wird: Ist das Bit 4 bereits gesetzt, muss es nicht auf "0" und wieder auf "1" gesetzt werden, damit der Fahrauftrag gestartet wird.
- Bit 5: Ist dieses Bit auf "1" gesetzt, wird ein durch Bit 4 ausgelöster Fahrauftrag sofort ausgeführt. Ist es auf "0" gesetzt, wird der gerade ausgeführte Fahrauftrag zu Ende gefahren und erst im Anschluss der nächste Fahrauftrag gestartet.
- Bit 6: Bei "0" ist die Zielposition (**607A**h) absolut und bei "1" ist die Zielposition relativ. Die Referenzposition ist abhängig von den Bits 0 und 1 des Objekts **60F2**h.
- Bit 8 (Halt): Ist dieses Bit auf "1" gesetzt, bleibt der Motor stehen. Bei einem Übergang von "1" auf "0" beschleunigt der Motor mit der eingestellten Startrampe bis zur Zielgeschwindigkeit. Bei einem Übergang von "0" auf "1" bremst der Motor ab und bleibt stehen. Die Bremsbeschleunigung ist dabei abhängig von der Einstellung des "Halt Option Code" im Objekt **605D**h.
- Bit 9 (Change on setpoint): Ist dieses Bit gesetzt, wird die Geschwindigkeit erst beim Erreichen der ersten Zielposition geändert. Das bedeutet, dass vor Erreichen des ersten Ziels keine Bremsung durchgeführt wird, da der Motor auf dieser Position nicht stehen bleiben soll.

<table>
<thead>
<tr>
<th>Controlword 6040h</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 9</td>
<td>Bit 5</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Siehe dazu das Bild in "Setzen von Fahrbefehlen".
Hinweis

Das Bit 9 im Controlword wird ignoriert, wenn die Rampengeschwindigkeit im Zielpunkt unterschritten wird. In diesem Fall müsste die Steuerung zurücksetzen und Anlauf nehmen, um die Vorgabe zu erreichen.

Statusword

Folgende Bits im Objekt 6041h (Statusword) haben eine gesonderte Funktion:

- Bit 10 (Target Reached): Dieses Bit ist auf "1" gesetzt, wenn das letzte Ziel erreicht wurde und der Motor eine vorgegebene Zeit (6068h) innerhalb eines Toleranzfensters (6067h) steht.
- Bit 12 (Set-point acknowledge): Dieses Bit bestätigt den Erhalt eines neuen und gültigen Zielpunktes. Es wird synchron zu dem Bit "New set-point" im Controlword gesetzt und zurückgesetzt.
 Eine Ausnahme besteht, wenn eine neue Fahrt gestartet wird, während eine andere noch nicht abgeschlossen ist, und die nächste Fahrt erst nach dem Abschluss der ersten Fahrt ausgeführt werden soll. In diesem Fall wird das Bit erst zurückgesetzt, wenn der Befehl angenommen wurde und die Steuerung bereit ist, neue Fahrbefehle auszuführen. Wird ein neuer Fahrauftrag gesendet, obwohl dieses Bit noch gesetzt ist, wird der neueste Fahrauftrag ignoriert. Das Bit wird nicht gesetzt, wenn eine der folgenden Bedingungen erfüllt ist:
 - Die neue Zielposition kann unter Einhaltung aller Randbedingungen nicht mehr erreicht werden.
 - Es wird bereits eine Zielposition angefahren und zudem ist bereits eine Zielposition vorgegeben. Eine neue Zielposition lässt sich erst vorgeben, nachdem die aktuelle Positionierung abgeschlossen ist.
- Bit 13 (Following Error): Dieses Bit wird im Closed Loop-Betrieb gesetzt, wenn der Schleppfehler größer als die eingestellten Grenzen ist (6065h (Following Error Window) und 6066h (Following Error Time Out)).

7.1.2 Setzen von Fahrbefehlen

Fahrbefehl

In Objekt 607Ah (Target Position) wird die neue Zielposition in Benutzereinheiten angegeben (siehe Benutzerdefinierte Einheiten). Anschließend wird mit dem Setzen von Bit 4 im Objekt 6040h (Controlword) der Fahrbefehl ausgelöst. Wenn die Zielposition gültig ist, antwortet die Steuerung mit Bit 12 im Objekt 6041h (Statusword) und beginnt die Positionierung. Sobald die Position erreicht ist, wird im Statusword das Bit 10 auf "1" gesetzt.
Die Steuerung kann das Bit 4 im Objekt 6040h (Controlword) auch selbstständig zurücksetzen. Das wird mit den Bits 4 und 5 des Objektes 60F2h eingestellt.

Weitere Fahrbefehle

Bit 12 im Objekt 6041h, (Statusword, Set-point acknowledge) fällt auf "0", falls ein weiterer Fahrbefehl zwischengespeichert werden kann (siehe Zeitpunkt 1 im nachfolgenden Bild). Solange eine Zielposition angefahren wird, lässt sich eine zweite Zielposition vorbereitend an die Steuerung übergeben. Dabei können alle Parameter - wie Geschwindigkeit, Beschleunigung, Bremsbeschleunigung usw. - neu gesetzt werden (Zeitpunkt 2). Ist der Zwischenspeicher wieder leer, lässt sich der nächste Zeitpunkt einreihen (Zeitpunkt 3).

Sollte der Zwischenspeicher schon voll sein, wird ein neuer Zielpunkt ignoriert (Zeitpunkt 4). Wird Bit 5 im Objekt 6040h (Controlword, Bit: "Change Set-Point Immediately") gesetzt, arbeitet die Steuerung ohne den Zwischenspeicher, neue Fahrbefehle werden direkt umgesetzt (Zeitpunkt 5).
Zeitpunkte

Übergangsprozedur für zweite Zielposition

Die folgende Grafik zeigt die Übergangsprozedur für die zweite Zielposition, während die erste Zielposition angefahren wird. In dieser Abbildung ist Bit 5 von Objekt 6040h (Controlword) auf "1" gesetzt, der neue Zielwert wird demnach sofort übernommen.
Möglichkeiten zum Anfahren einer Zielposition

Ist Bit 9 in Objekt 6040h (Controlword) gleich "0", wird die momentane Zielposition erst vollständig angefahren. In diesem Beispiel ist die Endgeschwindigkeit (6082h) der ersten Zielposition gleich Null. Wird Bit 9 auf "1" gesetzt, wird die Profilgeschwindigkeit (6081h) gehalten, bis die Zielposition erreicht wurde; erst ab dann gelten die neuen Randbedingungen.

Mögliche Kombinationen von Fahrbefehlen

Um eine bessere Übersicht für die Fahrbefehle zu bekommen, werden in diesem Kapitel Kombinationen von Fahrbefehlen aufgelistet und dargestellt.
Die nachfolgenden Bilder setzen voraus:

- Ein Doppelpfeil markiert einen neuen Fahrbefehl.
- Der erste Fahrbefehl am Start ist immer ein absoluter Fahrbefehl auf die Position 1100.
- Die zweite Bewegung wird mit einer niedrigeren Geschwindigkeit durchgeführt, um einen übersichtlicher dargestellten Graphen zu erhalten.

- Änderung im Zielpunkt übernehmen (6040h:00 Bit 5 = 0)
- Positionierung absolut (6040h:00 Bit 6 = 0)
- Zielposition: 300

- Relativ zu der vorhergehenden Zielposition (60F2h:00 = 0)
- Änderung im Zielpunkt übernehmen (6040h:00 Bit 5 = 0)
- Positionierung relativ (6040h:00 Bit 6 = 1)
- Zielposition: 300

- Änderung sofort übernehmen (6040h:00 Bit 5 = 1)
- Positionierung absolut (6040h:00 Bit 6 = 0)
- Zielposition: 300

- Relativ zu der vorhergehenden Zielposition (60F2h:00 = 0)
- Änderung sofort übernehmen (6040h:00 Bit 5 = 1)
- Positionierung relativ (6040h:00 Bit 6 = 1)
- Zielposition: 300
7.1.3 Genauigkeitsverlust bei Relativbewegungen

Die aktuelle Position wird einmal pro Millisekunde abgetastet. Es kann passieren, dass die Zielposition zwischen zwei Abtastungen erreicht wird. Im Falle einer Endgeschwindigkeit ungleich Null wird die Abtastung nach Erreichen der Zielposition als Grundlage für die nachfolgende Bewegung als Offset herangezogen. Demzufolge kann die nachfolgende Bewegung etwas weiter gehen, als erwartet.
7.1.4 Randbedingungen für eine Positionierfahrt

Objekteinträge

Die Randbedingungen für die gefahrene Position lassen sich in folgenden Einträgen des Objektverzeichnisses einstellen:

- **607A_h** (Target Position): vorgesehene Zielposition
- **607D_h** (Software Position Limit): Definition der Endanschläge (siehe Kapitel Software-Endschalter)
- **607C_h** (Home Offset): Gibt die Differenz zwischen Null-Position der Steuerung und dem Referenzpunkt der Maschine in benutzerdefinierten Einheiten an. (siehe "Homing")
- **607B_h** (Position Range Limit): Grenzen einer Modulo-Operation zur Nachbildung einer endlosen Rotationsachse
- **607E_h** (Polarity): Drehrichtung
- **6081_h** (Profile Velocity): maximale Geschwindigkeit, mit der die Position angefahren werden soll
- **6082_h** (End Velocity): Geschwindigkeit beim Erreichen der Zielposition
- **6083_h** (Profile Acceleration): gewünschte Anfahrbeschleunigung
- **6084_h** (Profile deceleration): gewünschte Bremsbeschleunigung
- **6085_h** (Quick Stop Deceleration): Nothalt-Bremsbeschleunigung im Falle des Zustandes "Quick stop active" der "CiA 402 Power State machine"
- **6086_h** (Motion Profile Type): Typ der zu fahrenden Ramp; ist der Wert "0", wird der Ruck nicht limitiert, ist der Wert "3", werden die Werte von 60A4_h:1_h-4_h als Limitierungen des Rucks gesetzt.
- **60C5_h** (Max Acceleration): die maximale Beschleunigung, die beim Anfahren der Endposition nicht überschritten werden darf
- **60C6_h** (Max Deceleration): die maximale Bremsbeschleunigung, die beim Anfahren der Endposition nicht überschritten werden darf
- **60A4_h** (Profile Jerk), Subindex 01_h bis 04_h: Objekte zur Beschreibung der Grenzwerte für den Ruck.
- **6080_h** (Max Motor Speed): begrenzt, der kleinere Wert wird als Grenze herangezogen.
- **60F2_h** (Positioning Option Code): definiert das Positionierverhalten

Objekte für die Positionierfahrt

Die nachfolgende Grafik zeigt die beteiligten Objekte für die Randbedingungen der Positionierfahrt.
Parameter für die Zielposition

Nachfolgende Grafik zeigt eine Übersicht über die Parameter, die für das Anfahren einer Zielposition angewendet werden (Abbildung nicht maßstabsgeeignet).

7.1.5 Ruck-begrenzter und nicht ruck-begrenzter Modus

Beschreibung

Es wird grundsätzlich zwischen den Modi "ruck-begrenzt" und "nicht ruck-begrenzt" unterschieden.

Ruck-begrenzter Modus

Eine ruck-begrenzte Positionierung lässt sich erreichen, indem das Objekt 6086h auf "3" gesetzt wird. Damit werden die Einträge für die Rucke im Subindex :1h - 4h vom Objekt 60A4 gültig.

Nicht ruck-begrenzter Modus

Eine "nicht ruck-begrenzte" Rampe wird gefahren, wenn der Eintrag im Objekt 6086h auf "0" gesetzt wird (Standard-Einstellung).
7.2 Velocity

7.2.1 Beschreibung

Dieser Modus betreibt den Motor unter Vorgabe einer Zielgeschwindigkeit ähnlich einem Frequenzumrichter. Im Gegensatz zum Profile Velocity Mode erlaubt dieser Modus nicht, ruckbegrenzte Rampen auszuwählen.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe Begrenzung des Bewegungsbereichs.

7.2.2 Aktivierung

Um den Modus zu aktivieren, muss im Objekt 6060h (Modes Of Operation) der Wert "2" gesetzt werden (siehe CiA 402 Power State Machine).

7.2.3 Controlword

Folgende Bits im Objekt 6040h (Controlword) haben eine gesonderte Funktion:

- Bit 8 (Halt): Ist dieses Bit auf "1" gesetzt bleibt der Motor stehen. Bei einem Übergang von "1" auf "0" beschleunigt der Motor mit der eingestellten Beschleunigungsrampe bis zur Zielgeschwindigkeit. Bei einem Übergang von "0" auf "1" bremst der Motor entsprechend der Bremsrampe ab und bleibt stehen.

7.2.4 Statusword

Folgende Bits im Objekt 6041h (Statusword) haben eine gesonderte Funktion:

7.2.5 Objekteinträge

Folgende Objekte sind zur Steuerung dieses Modus erforderlich:

- 6040h (Dimension Factor): Hier wird die Einheit der Geschwindigkeitsangaben für die nachfolgenden Objekte festgelegt. Der Subindex 1 enthält den Nenner (Multiplikator) und der Subindex 2 den Zähler (Divisor), mit dem interne Geschwindigkeitsangaben in Umdrehungen pro Minute verrechnet werden. Wird z.B. Subindex 1 auf den Wert "60" und Subindex 2 auf den Wert "1" eingestellt, erfolgt die Geschwindigkeitsangabe in Umdrehungen pro Sekunde (60 Umdrehungen pro 1 Minute).

- 6042h: Target Velocity. Hier wird die Zielgeschwindigkeit in benutzerdefinierten Einheiten eingestellt.

- 6048h: Velocity Acceleration. Dieses Objekt definiert die Beschleunigung. Der Subindex 1 enthält dabei die Geschwindigkeitsänderung, der Subindex 2 die zugehörige Zeit in Sekunden. Beides zusammen wird als Beschleunigung verrechnet:

\[
VL\ velocity\ acceleration = \frac{\Delta \text{speed (}6048_{h}:1)}{\Delta \text{time (}6048_{h}:2)}
\]

- 6049h (Velocity Deceleration): Dieses Objekt definiert die Verzögerung (Bremsrampe). Die Subindizes sind dabei so aufgebaut, wie im Objekt 6048h beschrieben, die Geschwindigkeitsänderung ist mit positiven Vorzeichen anzugeben.

- 6046h (Velocity Min Max Amount):
In diesem Objekt werden die Limitierungen der Zielgeschwindigkeiten angegeben.

In $6046_h:1h$ wird die minimale Geschwindigkeit eingestellt. Unterschreitet die Zielgeschwindigkeit (6042_h) die Minimalgeschwindigkeit, wird der Wert auf die Minimalgeschwindigkeit $6046_h:1h$ begrenzt.

In $6046_h:2h$ wird die maximale Geschwindigkeit eingestellt. Überschreitet die Zielgeschwindigkeit (6042_h) die Maximalgeschwindigkeit, wird der Wert auf die Maximalgeschwindigkeit $6046_h:2h$ begrenzt.

- $604A_h$ (Velocity Quick Stop):
 Mit diesem Objekt kann die Schnellstop-Rampe eingestellt werden. Die Subindizes 1 und 2 sind dabei identisch wie bei Objekt 6048_h beschrieben.

- 6080_h (Max Motor Speed): maximale Geschwindigkeit

Folgende Objekte können zur Kontrolle der Funktion genutzt werden:

- 6043_h (VI Velocity Demand)
- 6044_h (VI Velocity Actual Value)

Geschwindigkeiten im Velocity Mode

![Diagram of Velocity Mode](image)

Objekte für den Velocity Mode

Der Rampengenerator folgt der Zielgeschwindigkeit unter Einhaltung der eingestellten Geschwindigkeits- und Beschleunigungsgrenzen. Solange eine Begrenzung aktiv ist, wird das Bit 11 im Objekt 6041_h gesetzt (internal limit active).
7.3 Profile Velocity

7.3.1 Beschreibung

Dieser Modus betreibt den Motor im Geschwindigkeitsmodus mit erweiterten (ruck-limitierten) Rampen. Im Gegensatz zum Velocity Mode (siehe "Velocity") wird bei diesem Modus im Statusword angezeigt, ob die Zielgeschwindigkeit erreicht ist.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe Begrenzung des Bewegungsbereichs.

7.3.2 Aktivierung

Um den Modus zu aktivieren, muss im Objekt 6060h (Modes Of Operation) der Wert "3" gesetzt werden (siehe "CiA 402 Power State Machine").

7.3.3 Controlword

Folgende Bits im Objekt 6040h (Controlword) haben eine gesonderte Funktion:

- Bit 8 (Halt): Ist dieses Bit auf "1" gesetzt, bleibt der Motor stehen. Bei einem Übergang von "1" auf "0" beschleunigt der Motor mit der eingestellten Startrampe bis zur Zielgeschwindigkeit. Bei einem Übergang von "0" auf "1" bremst der Motor ab und bleibt stehen.

7.3.4 Statusword

Folgende Bits im Objekt 6041h (Statusword) haben eine gesonderte Funktion:

- Bit 10 (Zielgeschwindigkeit erreicht; Target Reached): Dieses Bit gibt in Kombination mit dem Bit 8 im Controlword an, ob die Zielgeschwindigkeit erreicht ist, gebremst wird oder der Motor steht (siehe Tabelle).

<table>
<thead>
<tr>
<th>6041h Bit 10</th>
<th>6040h Bit 8</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Zielgeschwindigkeit nicht erreicht</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Achse bremst</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Zielgeschwindigkeit innerhalb Zielfenster (definiert in 606Dh und 606Eh)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Geschwindigkeit der Achse ist 0</td>
</tr>
</tbody>
</table>

- Bit 13 (Deviation Error): Dieses Bit wird im Closed Loop-Betrieb gesetzt, wenn der Schlupf Fehler größer als die eingestellten Grenzen ist (60F8h Max Slippage und 203Fh Max Slippage Time Out).

7.3.5 Objekteinträge

Folgende Objekte sind zur Steuerung dieses Modus erforderlich:

- 606Bh (Velocity Demand Value):
 Dieses Objekt enthält die Ausgabe des Rampengenerators, die gleichzeitig der Vorgabewert für den Geschwindigkeitsregler ist.

- 606Ch (Velocity Actual Value):
 Gibt die aktuelle Istgeschwindigkeit an.

- 606Dh (Velocity Window):

Version: 1.0.1 / FIR-v1748
Dieser Wert gibt an, wie stark die tatsächliche Geschwindigkeit von der Sollgeschwindigkeit abweichen darf, damit das Bit 10 (Zielgeschwindigkeit erreicht; Target Reached) im Objekt 6041h (Statusword) auf "1" gesetzt ist.

- **606Eh** (Velocity Window Time):
 Dieses Objekt gibt an, wie lange die reale Geschwindigkeit und die Sollgeschwindigkeit nahe beieinander liegen müssen (siehe 606Dh "Velocity Window"), damit Bit 10 "Zielgeschwindigkeit erreicht" im Objekt 6041h (Statusword) auf "1" gesetzt wird.

- **607Eh** (Polarity):
 Wird hier Bit 6 auf "1" gestellt, wird das Vorzeichen der Zielgeschwindigkeit umgekehrt.

- **6083h** (Profile acceleration):
 Setzt den Wert für die Beschleunigungsrampe im Velocity Mode.

- **6084h** (Profile Deceleration):
 Setzt den Wert für die Bremsrampe im Velocity-Mode.

- **6085h** (Quick Stop Deceleration):
 Setzt den Wert für die Bremsrampe für die Schnellbremsung im Velocity Mode.

- **6086h** (Motion Profile Type):
 Hier kann der Rampentyp ausgewählt werden ("0" = Trapez-Rampe, "3" = ruck-begrenzte Rampe).

- **60FFh** (Target Velocity):
 Gibt die zu erreichende Zielgeschwindigkeit an.

- Die Geschwindigkeit wird durch 607Fh (Max Profile Velocity) und 6080h (Max Motor Speed) begrenzt, der kleinere Wert wird als Grenze herangezogen.

Objekte im Profile Velocity Mode

![Diagram of Profile Velocity Mode](image)

Aktivierung

Nachdem der Modus im Objekt 6060h (Modes Of Operation) ausgewählt wurde und die "Power State machine" (siehe "CiA 402 Power State Machine") auf Operation enabled geschaltet wurde, wird der Motor auf die Zielgeschwindigkeit im Objekt 60FFh beschleunigt (siehe nachfolgende Bilder). Dabei werden die Geschwindigkeits-, Beschleunigungs- und bei ruck-begrenzten Rampen auch die Ruckgrenzwerte berücksichtigt.

Limitierungen im ruck-limitierten Fall

Das folgende Bild zeigt die einstellbaren Limitierungen im ruck-limitierten Fall (6086h = 3).
Limitierungen im Trapez-Fall

Dieses Bild zeigt die einstellbaren Limitierungen für den Trapez-Fall \(6086_h = 0\).

7.4 Profile Torque

7.4.1 Beschreibung

In diesem Modus wird das Drehmoment als Sollwert vorgegeben und über eine Rampenfunktion angefahre.
7.4.2 Aktivierung

Um den Modus zu aktivieren, muss im Objekt \textit{6060h} (Modes Of Operation) der Wert "4" gesetzt werden (siehe "CiA 402 Power State Machine").

7.4.3 Controlword

Folgende Bits im Objekt \textit{6040h} (Controlword) haben eine gesonderte Funktion:

- Bit 8 (Halt): Ist dieses Bit auf "1" gesetzt, bleibt der Motor stehen. Wird dieses Bit von "1" auf "0" gesetzt, wird der Motor den Vorgaben entsprechend angefahren. Beim Setzen von "0" auf "1" wird der Motor unter Berücksichtigung der Vorgabewerte wieder zum Stillstand gebracht.

7.4.4 Statusword

Folgende Bits im Objekt \textit{6041h} (Statusword) haben eine gesonderte Funktion:

- Bit 10 (Target Reached): Dieses Bit gibt in Kombination mit dem Bit 8 des Objekts \textit{6040h} (Controlword) an, ob das vorgegebene Drehmoment erreicht ist (siehe nachfolgende Tabelle). Das Ziel gilt als erreicht wenn das Istdrehmoment (\textit{6077h Torque Actual Value}) eine vorgegebene Zeit (\textit{203Eh Torque Window Time Out}) innerhalb eines Toleranzfensters (\textit{203Dh Torque Window}) ist.

<table>
<thead>
<tr>
<th>\textit{6040h} Bit 8</th>
<th>\textit{6041h} Bit 10</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>Vorgegebenes Drehmoment nicht erreicht</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
<td>Vorgegebenes Drehmoment erreicht</td>
</tr>
<tr>
<td>1 0</td>
<td></td>
<td>Achse beschleunigt</td>
</tr>
<tr>
<td>1 1</td>
<td></td>
<td>Geschwindigkeit der Achse ist 0</td>
</tr>
</tbody>
</table>

- Bit 11: Limit überschritten: Das Zieldrehmoment (\textit{6071h}) überschreitet das in \textit{6072h} eingegebene maximalen Drehmoment.

7.4.5 Objekteinträge

Alle Werte der folgenden Einträge im Objektverzeichnis sind als Tausendstel des maximalen Drehmoments anzugeben, welches dem Nennstrom (\textit{203Bh:01h}) entspricht. Dazu zählen die Objekte:

- \textit{6071h} (Target Torque): Zielvorgabe des Drehmomentes
- \textit{6072h} (Max Torque): Maximales Drehmoment während der gesamten Rampe (Beschleunigen, Drehmoment halten, Abbremsen)
- \textit{6074h} (Torque Demand): Momentaner Ausgabewert des Rampengenerators (Drehmoment) für den Regler
- \textit{6087h} (Torque Slope): Max. Änderung des Drehmoments pro Sekunde
Hinweis

Die folgenden Objekte werden zudem für diesen Operationsmodus benötigt:

- **320₂ₜ** Bit 5 (Motor Drive Submode Select):
 Ist dieses Bit auf "0" gesetzt, wird der Antriebsregler im Drehmoment-begrenzten Velocity Mode betrieben, d.h. die maximale Geschwindigkeit kann in Objekt 608₀ₜ begrenzt werden und der Regler kann im Feldschwächebetrieb arbeiten.
 Wird dieses Bit auf "1" gesetzt, arbeitet der Regler im ("Real") Torque Mode, die maximale Geschwindigkeit kann hier nicht begrenzt werden und der Feldschwächebetrieb ist nicht möglich.

Objekte des Rampengenerators

- Target torque 607₁₇ₜ
- Max torque 607₂₇ₜ
- Torque slope 608₇ₗₜ
- Torque demand 607₄ₖₜ

Torque-Verlauf

7.5 Homing

7.5.1 Übersicht

Beschreibung

Aufgabe der Referenzfahrt (Homing Method) ist es, den Positionsnachlaufpunkt der Steuerung auf einen Encoder-Index bzw. Positionsschalter auszurichten.

Aktivierung

Um den Modus zu aktivieren, muss im Objekt 606₀ₜ (Modes Of Operation) der Wert "6" gesetzt werden (siehe "CiA 402 Power State Machine").

Werden Referenz- und/oder Endschalter verwendet, müssen diese Spezialfunktionen erst in der E/A-Konfiguration aktiviert werden (siehe "Digitale Ein- und Ausgänge").
Controlword

Folgende Bits im Objekt 6040\(_h\) (Controlword) haben eine gesonderte Funktion:

- Bit 4: Wird das Bit auf "1" gesetzt, wird die Referenzierung gestartet. Diese wird solange ausgeführt, bis entweder die Referenzposition erreicht wurde oder Bit 4 wieder auf "0" gesetzt wird.

Statusword

Folgende Bits im Objekt 6041\(_h\) (Statusword) haben eine gesonderte Funktion:

<table>
<thead>
<tr>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 10</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Referenzfahrt wird ausgeführt</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Referenzfahrt ist unterbrochen oder nicht gestartet</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Referenzfahrt bestätigt, aber Ziel wurde noch nicht erreicht</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Referenzfahrt vollständig abgeschlossen</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Fehler während der Referenzfahrt, Motor dreht sich noch</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Fehler während der Referenzfahrt, Motor im Stillstand</td>
</tr>
</tbody>
</table>

Objekteinträge

Folgende Objekte sind zur Steuerung dieses Modus erforderlich:

- 607C\(_h\) (Home Offset): Gibt die Differenz zwischen Null-Position der Steuerung und dem Referenzpunkt der Maschine in benutzerdefinierten Einheiten an.
- 6098\(_h\) (Homing Method): Methode, mit der referenziert werden soll (siehe "Referenzfahrt-Methode")
- 6099\(_h\):01\(_h\) (Speed During Search For Switch): Geschwindigkeit für die Suche nach dem Schalter
- 6099\(_h\):02\(_h\) (Speed During Search For Zero): Geschwindigkeit für die Suche nach dem Index
- 6080\(_h\) (Max Motor Speed): maximale Geschwindigkeit
- 609A\(_h\) (Homing Acceleration): Anfahr- und Bremsbeschleunigung für die Referenzfahrt
- 203A\(_h\):01\(_h\) (Minimum Current For Block Detection): Minimale Stromschwelle, durch deren Überschreiten, das Blockieren des Motors an einem Block erkannt werden soll.
- 203A\(_h\):02\(_h\) (Period Of Blocking): Gibt die Zeit in ms an, die der Motor nach der Blockdetection trotzdem noch gegen den Block fahren soll.

Geschwindigkeiten der Referenzfahrt

Das Bild zeigt die Geschwindigkeiten der Referenzfahrt am Beispiel der Methode 4:
7.5.2 Referenzfahrt-Methode

Beschreibung

Die Referenzfahrt-Methode wird als Zahl in das Objekt 6098h geschrieben und entscheidet darüber, ob auf eine Schalterflanke (steigend/fallend), eine Stromschwelle für Blockdetektion bzw. einen Index-Impuls referenziert wird oder in welche Richtung die Referenzfahrt startet. Methoden, die den Index-Impuls des Encoders benutzen, liegen im Zahlenbereich 1 bis 14, 33 und 34. Methoden, die den Index-Impuls des Encoders nicht benutzen, liegen zwischen 17 und 30, sind in den Fahrprofilen aber identisch mit den Methoden 1 bis 14. Diese Zahlen sind in den nachfolgenden Abbildungen eingekreist dargestellt. Methoden, bei denen keine Endschalter eingesetzt werden und stattdessen das Fahren gegen einen Block erkannt werden soll, müssen mit einem Minus vor der Methodenzahl aufgerufen werden.

Für die nachfolgenden Grafiken gilt die negative Bewegungsrichtung nach links. Der Endschalter (limit switch) liegt jeweils vor der mechanischen Blockierung, der Referenzschalter (home switch) liegt zwischen den beiden Endschaltern. Die Index-Impulse kommen vom angeschlossenen Encoder.

Bei Methoden, die Homing auf Block benutzen, gelten die gleichen Abbildungen wie für die Methoden mit Endschalter. Da sich außer den fehlenden Endschaltern nichts ändert, wurde auf neue Abbildungen verzichtet. Hier gilt für die Abbildungen, dass die Endschalter durch eine mechanische Blockierung ersetzt werden müssen.

Homing auf Block

Homing auf Block funktioniert derzeit nur im Closed Loop-Betrieb.

"Homing auf Block" funktioniert wie jede Homing-Methode mit dem Unterschied, dass zur Positionierung - anstelle auf einen Endschalter - auf einen Block (Endanschlag) gefahren wird. Dabei sind zwei Einstellungen vorzunehmen:

1. Stromhöhe: im Objekt 203Ah:01 wird die Stromhöhe definiert, ab der ein Fahren gegen den Block erkannt wird.
2. Blockierrauer: im Objekt 203Ah:02 wird die Dauer, während der Motor gegen den Block fährt, eingestellt.
Methoden-Überblick

Die Methoden 1 bis 14, sowie 33 und 34 benutzen den Index-Impuls des Encoders.

Die Methoden 17 bis 32 sind identisch mit den Methoden 1 bis 14, mit dem Unterschied, dass nur noch auf den End- oder Referenzschalter referenziert wird und nicht auf den Index-Impuls.

- Methoden 1 bis 14 verwenden einen Index-Impuls.
- Methoden 17 bis 30 verwenden keinen Index-Impuls.
- Methoden 33 und 34 referenzieren nur auf den nächsten Index-Impuls.
- Methode 35 referenziert auf die aktuelle Position.

Folgende Methoden können für Homing auf Block benutzt werden:

- Methoden -1 bis -2 und -7 bis -14 enthalten einen Index-Impuls
- Methoden -17 bis -18 und -23 bis -30 haben keinen Index-Impuls

Methoden 1 und 2

Referenzieren auf Endschalter und Index-Impuls.

Methode 1 referenziert auf negativen Endschalter und Index-Impuls:

Methode 2 referenziert auf positiven Endschalter und Index-Impuls:

Methoden 3 bis 6

Referenzieren auf die Schaltflanke des Referenzschalters und Index-Impuls.
Bei den Methoden 3 und 4 wird die linke Schaltflanke des Referenzschalters als Referenz verwendet:

Bei den Methoden 5 und 6 wird die rechte Schaltflanke des Referenzschalters als Referenz verwendet:

Methoden 7 bis 14

Referenzieren auf Referenzschalter und Index-Impuls (mit Endschaltern).

Bei diesen Methoden ist die derzeitige Position relativ zum Referenzschalter unwichtig. Mit der Methode 10 wird beispielsweise immer auf den Index-Impuls rechts neben der rechten Flanke des Referenzschalters referenziert.

Die Methoden 7 bis 10 berücksichtigen den positiven Endschalter:
Die Methoden 11 bis 14 berücksichtigen den negativen Endschalter:

Methoden 17 und 18

Referenzieren auf den Endschalter ohne den Index-Impuls.

Methode 17 referenziert auf den negativen Endschalter:

Methoden 19 bis 22

Referenzieren auf die Schaltflanke des Referenzschalters ohne den Index-Impuls.

Bei den Methoden 19 und 20 (äquivalent zu Methoden 3 und 4) wird die linke Schaltflanke des Referenzschalters als Referenz verwendet:
Bei den Methoden 21 und 22 (äquivalent zu Methoden 5 und 6) wird die rechte Schaltflanke des Referenzschalters als Referenz verwendet:

Methoden 23 bis 30

Referenzieren auf Referenzschalter ohne den Index-Impuls (mit Endschaltern).

Bei diesen Methoden ist die derzeitige Position relativ zum Referenzschalter unwichtig. Mit der Methode 26 wird beispielsweise immer auf den Index-Impuls rechts neben der rechten Flanke des Referenzschalters referenziert.

Die Methoden 23 bis 26 berücksichtigen den positiven Referenzschalter:

Die Methoden 27 bis 30 berücksichtigen den negativen Referenzschalter:
Methoden 33 und 34

Referenzieren auf den nächsten Index-Impuls.

Bei diesen Methoden wird nur auf den jeweils folgenden Index-Impuls referenziert:

Methode 35

Referenziert auf die aktuelle Position.

Hinweis

7.6 Interpolated Position Mode

7.6.1 Übersicht

Beschreibung

Hinweis
In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe Begrenzung des Bewegungsbereichs.

Synchronisierung zum SYNC-Objekt

Hinweis
Es wird empfohlen, wenn möglich ein Zeitintervall des SYNC-Objekts zu nutzen.

7.6.2 Aktivierung

Um den Modus zu aktivieren, muss im Objekt 6060h (Modes Of Operation) der Wert "7" gesetzt werden (siehe "CiA 402 Power State Machine").

7.6.3 Controlword

Folgende Bits im Objekt 6040h (Controlword) haben eine gesonderte Funktion:

- Bit 4 aktiviert die Interpolation, wenn es auf "1" gesetzt wird.
- Bit 8 (Halt): Ist dieses Bit auf "1" gesetzt, bleibt der Motor stehen. Bei einem Übergang von "1" auf "0" beschleunigt der Motor mit der eingestellten Startrampe bis zur Zielgeschwindigkeit. Bei einem Übergang von "0" auf "1" bremst der Motor ab und bleibt stehen. Die Bremsbeschleunigung ist dabei abhängig von der Einstellung des "Halt Option Code" im Objekt 605Dh.

7.6.4 Statusword

Folgende Bits im Objekt 6041h (Statusword) haben eine gesonderte Funktion:

- Bit 10: Zielposition erreicht: Dieses bit ist auf "1" gesetzt, wenn die Zielposition erreicht wurde (sollte das Halt-Bit im Controlword "0" sein) oder die Achse hat die Geschwindigkeit 0 (falls das Halt-Bit im letzten Controlword "1" war).
- Bit 12 (IP Modus aktiv): Dieses Bit wird auf "1" gesetzt, wenn die Interpolation aktiv ist.

7.6.5 Benutzung

Die Steuerung folgt einem linear interpolierten Pfad zwischen der aktuellen und der vorgegebenen Zielposition. Die (nächste) Zielposition muss in das Datensatz 60C1h:01h geschrieben werden.
Technisches Handbuch NP5-20 (EtherCAT)

7 Betriebsmodi

7.6.6 Setup

Das folgende Setup ist nötig:

- \textbf{60C2}_{h:01}_{h:02}: Zeit zwischen zwei übergebenen Zielpositionen in ms.
- \textbf{60C4}_{h:06}_{h:06}: dieses Objekt ist auf "1" zu setzen um die Zielposition im Objekt \textbf{60C1}_{h:01}_{h:01} zu modifizieren.
- \textbf{6081}_{h:02}_{h:02} (Profile Velocity): maximale Geschwindigkeit, mit der die Position angefahren werden soll.
- Die Geschwindigkeit wird durch \textbf{607F}_{h:01}_{h:01} (Max Profile Velocity) und \textbf{6080}_{h:02}_{h:02} (Max Motor Speed) begrenzt, der kleinere Wert wird als Grenze herangezogen.
- Um den Motor drehen zu können, ist die \textit{Power state machine} auf den Status \textit{Operation enabled} zu setzen (siehe \textit{CiA 402 Power State Machine}).

7.6.7 Operation

Nach dem Setup ist die Aufgabe der übergerodeten Steuerung, die Zielpositionen rechtzeitig in das Objekt \textbf{60C1}_{h:01}_{h:01} zu schreiben.

7.7 Cyclic Synchronous Position

7.7.1 Übersicht

Beschreibung

In diesem Modus wird der Steuerung in festen Zeitabständen (im Folgenden \textit{Zyklus} genannt) über den Feldbus eine absolute Positionsangabe übergeben. Die Steuerung berechnet dabei keine Rampen mehr, sondern folgt nur noch den Vorgaben.

Die Zielposition wird zyklisch (per \textit{PDO}) übertragen. Das Bit 4 im Controlword muss nicht gesetzt werden (im Gegensatz zum \textit{Profile Position} Modus).

\begin{tabular}{|l|}
\hline
\textbf{Hinweis} \\
\hline
Die Zielvorgabe ist absolut und damit unabhängig davon, wie oft sie pro \textit{Zyklus} versendet wurde. \\
\hline
\end{tabular}
In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe **Begrenzung des Bewegungsbereichs**.

Aktivierung

Um den Modus zu aktivieren, muss im Objekt 6060h (Modes Of Operation) der Wert "8" gesetzt werden (siehe **CiA 402 Power State Machine**).

Controlword

In diesem Modus haben die Bits des Controlword 6040h keine gesonderte Funktion.

Statusword

Folgende Bits im Objekt 6041h (Statusword) haben eine gesonderte Funktion:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
<td>Steuerung ist nicht synchron zum Feldbus</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Steuerung ist synchron zum Feldbus</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>Reserviert</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Reserviert</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>Steuerung folgt nicht der Zielvorgabe, die Vorgabe des 607Ah (Target Position) wird ignoriert</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Steuerung folgt der Zielvorgabe, das Objekt 607Ah (Target Position) wird als Eingabe für die Positionsregelung genutzt.</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>Kein Schleppfehler</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Schleppfehler</td>
</tr>
</tbody>
</table>

7.7.2 Objekteinträge

Folgende Objekte sind zur Steuerung dieses Modus erforderlich:

- **607Ah** (Target Position): Dieses Objekt muss zyklisch mit dem Positions-Sollwert beschrieben werden.
- **607Bh** (Position Range Limit): Dieses Objekt enthält die Vorgabe für einen Über- oder Unterlauf der Positionsangabe.
- **607Dh** (Software Position Limit): Dieses Objekt legt die Limitierungen fest, innerhalb deren sich die Positionsangabe (607Ah) befinden muss.
- **6065h** (Following Error Window): Dieses Objekt gibt einen Toleranz-Korridor in positiver wie negativer Richtung von der Sollvorgabe vor. Befindet sich die Ist-Position länger als die vorgegebene Zeit (6066h) außerhalb dieses Korridors, wird ein Schleppfehler gemeldet.
- **6066h** (Following Error Time Out): Dieses Objekt gibt den Zeitbereich in Millisekunden vor. Sollte sich die Ist-Position länger als dieser Zeitbereich außerhalb des Positions-Korridors (6065h) befinden, wird ein Schleppfehler ausgelöst.
- **6085h** (Quick-Stop Deceleration): Dieses Objekt hält die Bremsbeschleunigung für den Fall, dass ein Quick-Stop ausgelöst wird.
- **605Ah** (Quick-Stop Option Code): Dieses Objekt enthält die Option, die im Falle eines Quick-Stops ausgeführt werden soll.
- **6080h** (Max Motor Speed): maximale Geschwindigkeit
Betriebsmodi

7 Betriebsmodi

• \textbf{60C2}\textsubscript{h}:01 (Interpolation Time Period): Dieses Objekt gibt die Zeit eines Zyklus vor, in diesen Zeitabständen muss ein neuer Sollwert in das \textbf{607A}\textsubscript{h} geschrieben werden. Es gilt dabei: Zykluszeit = Wert des \textbf{60C2}\textsubscript{h}:01 \times 10^6 \text{ Sekunden}.

• \textbf{60C2}\textsubscript{h}:02 (Interpolation Time Index): Dieses Objekt gibt die Zeitbasis der Zyklen an. Derzeit wird nur der Wert \textbf{60C2}\textsubscript{h}:02\textsubscript{h}=-3 unterstützt, das ergibt eine Zeitbasis von 1 Millisekunde.

 Folgende Objekte können in dem Modus ausgelesen werden:

• \textbf{6064}\textsubscript{h} (Position Actual Value)
• \textbf{606C}\textsubscript{h} (Velocity Actual Value)
• \textbf{60F4}\textsubscript{h} (Following Error Actual Value)

7.8 Cyclic Synchronous Velocity

7.8.1 Übersicht

Beschreibung

In diesem Modus wird der Steuerung in festen Zeitabständen (im Folgenden \textit{Zyklus} genannt) über den Feldbus eine Geschwindigkeitsvorgabe übergeben. Die Steuerung berechnet dabei keine Rampen mehr, sondern folgt nur noch den Vorgaben.

\textbf{Hinweis}

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe \textit{Begrenzung des Bewegungsbereichs}.

Aktivierung

Um den Modus zu aktivieren, muss im Objekt \textbf{6060}\textsubscript{h} (Modes Of Operation) der Wert "9" gesetzt werden (siehe "\textit{CiA 402 Power State Machine}").

Controlword

In diesem Modus haben die Bits des Controlword \textbf{6040}\textsubscript{h} keine gesonderte Funktion.

Statusword

Folgende Bits im Objekt \textbf{6041}\textsubscript{h} (Statusword) haben eine gesonderte Funktion:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
<td>Steuerung ist nicht synchron zum Feldbus</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Steuerung ist synchron zum Feldbus</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>Reserviert</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Reserviert</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>Steuerung folgt nicht der Zielvorgabe, die Vorgabe des \textbf{60FF}\textsubscript{h} (Target Velocity) wird ignoriert</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Steuerung folgt der Zielvorgabe, das Objekt \textbf{60FF}\textsubscript{h} (Target Velocity) wird als Eingabe für die Positionsregelung genutzt.</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>Reserviert</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

7.8.2 Objekteinträge

Folgende Objekte sind zur Steuerung dieses Modus erforderlich:
• **60FFh (Target Velocity):** Dieses Objekt muss zyklisch mit dem Geschwindigkeits-Sollwert beschrieben werden.

• **6085h (Quick-Stop Deceleration):** Dieses Objekt hält die Bremsbeschleunigung für den Fall, dass ein Quick-Stop ausgelöst wird (siehe "CiA 402 Power State Machine").

• **605Ah (Quick-Stop Option Code):** Dieses Objekt enthält die Option, die im Falle eines Quick-Stops ausgeführt werden soll (siehe "CiA 402 Power State Machine").

• **6080h (Max Motor Speed):** maximale Geschwindigkeit

• **60C2h:01h (Interpolation Time Period):** Dieses Objekt gibt die Zeit eines Zyklus vor, in diesen Zeitabständen muss ein neuer Sollwert in das 60FFh geschrieben werden. Es gilt dabei: Zykluszeit = Wert des 60C2h:01h * 10^Wert des 60C2h:02h Sekunden.

• **60C2h:02h (Interpolation Time Index):** Dieses Objekt gibt die Zeitbasis der Zyklen an. Derzeit wird nur der Wert 60C2h:02h=-3 unterstützt, das ergibt eine Zeitbasis von 1 Millisekunde.

Folgende Objekte können in dem Modus ausgelesen werden:

• **606Ch (Velocity Actual Value)
• **607Eh (Polarity)**

7.9 Cyclic Synchronous Torque

7.9.1 Übersicht

Beschreibung

In diesem Modus wird der Steuerung in festen Zeitabständen (im Folgenden *Zyklus* genannt) über den Feldbus eine absolute Drehmomentvorgabe übergeben. Die Steuerung berechnet dabei keine Rampen mehr, sondern folgt nur noch den Vorgaben.

Hinweis

Dieser Modus funktioniert nur wenn der Closed Loop aktiviert ist, siehe auch Inbetriebnahme Closed Loop.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe Begrenzung des Bewegungsbereichs.

Aktivierung

Um den Modus zu aktivieren, muss im Objekt 6060h (Modes Of Operation) der Wert "10" gesetzt werden (siehe "CiA 402 Power State Machine").

Controlword

In diesem Modus haben die Bits des Controlword 6040h keine gesonderte Funktion.

Statusword

Folgende Bits im Objekt 6041h (Statusword) haben eine gesonderte Funktion:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
<td>Steuerung ist nicht synchron zum Feldbus</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Steuerung ist synchron zum Feldbus</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>
7.9.2 Objekteinträge

 Folgende Objekte sind zur Steuerung dieses Modus erforderlich:

- \(6071_h\) (Target Torque): Dieses Objekt muss zyklisch mit dem Drehmoment-Sollwert beschrieben werden und ist relativ zu \(6072_h\) einzustellen.
- \(6072_h\) (Max Torque): Beschreibt das maximal zulässige Drehmoment.
- \(6080_h\) (Max Motor Speed): maximale Geschwindigkeit
- \(60C2_h:01\) (Interpolation Time Period): Dieses Objekt gibt die Zeit eines Zyklus vor, in diesen Zeitabständen muss ein neuer Sollwert in das \(60FF_h\) geschrieben werden. Es gilt dabei: Zykluszeit = Wert des \(60C2_h:01\) * 10\(^{\text{Wert des }60C2_h:02}\) Sekunden.
- \(60C2_h:02\) (Interpolation Time Index): Dieses Objekt gibt die Zeitbasis der Zyklen an. Derzeit wird nur der Wert \(60C2_h:02=-3\) unterstützt, das ergibt eine Zeitbasis von 1 Millisekunde.

 Folgende Objekte können in dem Modus ausgelesen werden:

- \(606C_h\) (Velocity Actual Value)
- \(6074_h\) (Torque Demand)

7.10 Takt-Richtungs-Modus

7.10.1 Beschreibung

 Hinweis

 In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe Begrenzung des Bewegungsbereichs.

7.10.2 Aktivierung

 Um den Modus zu aktivieren, muss im Objekt \(6060_h\) (Modes Of Operation) der Wert “-1” (bzw.”FFh”) gesetzt werden (siehe "CiA 402 Power State Machine”).

7.10.3 Generelles

 Folgende Daten gelten für jede Unterart des Takt-Richtungs-Modus:

- Die maximale Frequenz der Eingangspulse liegt bei 1MHz, der ON-Puls sollte dabei nicht kleiner als 200 ns werden.
• Die Skalierung der Schritte erfolgt über die Objekte \(\text{2057}_h \) und \(\text{2058}_h \). Dabei gilt die folgende Formel:

\[
\text{Schrittweite pro Puls} = \frac{\text{2057}_h}{\text{2058}_h}
\]

Ab Werk ist der Wert "Schrittweite pro Puls" = 128 (\(\text{2057}_h=128 \) und \(\text{2058}_h=1 \)) eingestellt, was einem Viertelschritt pro Puls entspricht. Ein Volllschritt ist der Wert "512", ein Halbschritt pro Puls entsprechend "256" usw.

Hinweis

Hinweis

Bei einem Richtungswechsel ist es nötig, mindestens eine Zeit von 35µs verstreichen zu lassen, bevor der neue Takt angelegt wird.

7.10.4 Statusword

Folgende Bits im Objekt \(\text{6041}_h \) (Statusword) haben eine gesonderte Funktion:

• Bit 13 (Following Error): Dieses Bit wird im Closed Loop-Betrieb gesetzt, wenn der Schleppfehler größer als die eingestellten Grenzen ist (\(\text{6065}_h \) (Following Error Window) und \(\text{6066}_h \) (Following Error Time Out)).

7.10.5 Unterarten des Takt-Richtungs-Modus

Takt-Richtungs-Modus (TR-Modus)

Um den Modus zu aktivieren muss das Objekt \(\text{205B}_h \) auf den Wert "0" gesetzt sein (Werkseinstellung).

In diesem Modus müssen über den Takteingang die Pulse vorgegeben werden, das Signal des Richtungseingangs gibt dabei die Drehrichtung vor (siehe nachfolgende Grafik).
7 Betriebs Modi

Rechts-/Linkslauf-Modus (CW/CCW-Modus)

Um den Modus zu aktivieren muss das Objekt $205B_h$ auf den Wert "1" gesetzt sein.

In diesem Modus entscheidet der verwendete Eingang über die Drehrichtung (siehe nachfolgende Grafik).

7.11 Auto-Setup

7.11.1 Beschreibung

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe Begrenzung des Bewegungsbereichs.

7.11.2 Aktivierung

Um den Modus zu aktivieren, muss im Objekt 6060_h (Modes Of Operation) der Wert "-2" (="FE_h") gesetzt werden (siehe CIA 402 Power State Machine).
7.11.3 Controlword

Folgende Bits im Objekt 6040h (Controlword) haben eine gesonderte Funktion:

- Bit 4 startet einen Fahrauftrag. Dieser wird bei einem Übergang von "0" nach "1" übernommen.

7.11.4 Statusword

Folgende Bits im Objekt 6041h (Statusword) haben eine gesonderte Funktion:

- Bit 10: Indexed: zeigt an, ob ein Encoder-Index gefunden wurde (= "1") oder nicht (= "0").
- Bit 12: Aligned: dieses Bit wird auf "1" gesetzt, nachdem das Auto-Setup beendet ist.
8 Spezielle Funktionen

8.1 Digitale Ein- und Ausgänge

8.1.1 Ein- und Ausgangsbelegung festlegen

Die digitalen Ein- /Ausgänge 1 … 4 an der PCI-Steckleiste des Geräts können frei belegt werden, siehe auch Anschlussbelegung und 3231h Flex IO Configuration.

- Pin 1: DIO1_IO_CS
- Pin 2: DIO2_CD_CLK
- Pin 3: DIO3_CD_DIR
- Pin 4: DIO4_IO_MOSI

Beispiel für Subindex 01h: Pin 2 und Pin 3 sollen Ausgänge sein, Wert ="6" (=0110b)

1. Prüfen Sie welche Pins Sie als Ein- oder Ausgang definieren möchten.
2. Prüfen Sie welche Eingänge als Pulldown oder Pullup definieren möchten.
3. Setzen Sie die Werte in 3321h:01h und 3321h:02h, passend.
4. Speichern Sie das Objekt, indem Sie den Wert "65766173h" in 1010h:03h schreiben (siehe Kapitel Objekte speichern) und starten Sie die Steuerung neu.

8.1.2 Bitzuordnung

Die Software der Steuerung ordnet jedem Eingang und Ausgang zwei Bits im jeweiligen Objekt (z.B. 60FDh Digital Inputs bzw. 60FEh Digital Outputs) zu:

1. Das erste Bit entspricht der Spezialfunktion eines Ausgangs oder Eingangs. Diese Funktionen sind immer verfügbar auf den Bits 0 bis einschließlich 15 des jeweiligen Objekts. Darunter fallen die Endschalter und der Referenzschalter bei den digitalen Eingängen und die Bremsensteuerung bei den Ausgängen.
2. Das zweite Bit zeigt den Aus-/Eingang an sich als Pegel, diese sind auf Bit 16 bis 31 verfügbar.

Beispiel

Um den Wert des Ausgangs 2 zu manipulieren, ist immer Bit 17 in 60FEh zu benutzen.
Um die Spezialfunktion "Negativer Endschalter" des Eingangs 1 zu aktivieren, ist Bit 0 in 3240h:01h zu setzen, und um den Zustand des Eingangs abzufragen ist Bit 0 in 60FDh zu lesen. Das Bit 16 in 60FDh zeigt ebenfalls den Zustand des Eingangs 1 (unabhängig davon, ob die Spezialfunktion des Eingangs aktiviert wurde oder nicht).

In der nachfolgenden Zeichnung ist diese Zuordnung graphisch dargestellt.

Bits eines beliebigen Objektes zur Steuerung eines Aus-/Eingangs

<table>
<thead>
<tr>
<th>Wert des Aus-/Eingang 1</th>
<th>Spezialfunktionen der Aus-/Eingänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 31</td>
<td>Bit 16</td>
</tr>
</tbody>
</table>

8.1.3 Digitale Eingänge

Übersicht

Tipp

Hinweis

Bei Digitaleingängen mit 5 V darf die Länge der Zuleitungen 3 Meter nicht überschreiten.

Hinweis

Die digitalen Eingänge werden einmal pro Millisekunde erfasst. Signaländerungen am Eingang kürzer als eine Millisekunde werden nicht verarbeitet.

Folgende Eingänge stehen zur Verfügung:

<table>
<thead>
<tr>
<th>PIN/Eingang</th>
<th>Name für Input Routing</th>
<th>Auslieferungszustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3/DIO1_IO_CS</td>
<td>physikalischer Eingang 1</td>
<td>keine</td>
</tr>
<tr>
<td>B4/DIO2_CD_CLK</td>
<td>physikalischer Eingang 2</td>
<td>Takteingang im Takt-Richtungs-Modus</td>
</tr>
<tr>
<td>B5/DIO3_CD_DIR</td>
<td>physikalischer Eingang 3</td>
<td>Referenzschalter / Richtungseingang im Takt-Richtungs-Modus</td>
</tr>
<tr>
<td>B6/DIO4_IO_MOSI</td>
<td>physikalischer Eingang 4</td>
<td>keine</td>
</tr>
<tr>
<td>B7/DIO5_IO_MISO</td>
<td>physikalischer Eingang 5</td>
<td>keine</td>
</tr>
<tr>
<td>B8/DIO6_IO_CLK</td>
<td>physikalischer Eingang 6</td>
<td>keine</td>
</tr>
</tbody>
</table>
Objekteinträge

Über die folgenden OD-Einstellungen kann der Wert eines Eingangs manipuliert werden, wobei hier immer nur das entsprechende Bit auf den Eingang wirkt.

- **3240h:01h (Special Function Enable):** Dieses Bit erlaubt Sonderfunktionen eines Eingangs aus- (Wert "0") oder einzuschalten (Wert "1"). Soll Eingang 1 z.B. nicht als negativer Endschalter verwendet werden, so muss die Sonderfunktion abgeschaltet werden, damit nicht fälschlicherweise auf den Signalgeber reagiert wird. Auf die Bits 16 bis 31 hat das Objekt keine Auswirkungen. Die Firmware wertet folgende Bits aus:
 - Bit 0: Negativer Endschalter
 - Bit 1: Positiver Endschalter
 - Bit 2: Referenzschalter

Sollen z.B. zwei Endschalter und ein Referenzschalter verwendet werden, müssen Bits 0-2 in 3240h:01h auf "1" gesetzt werden

- **3240h:02h (Function Inverted):** Dieser Subindex wechselt von Schließer-Logik (ein logischer High-Pegel am Eingang ergibt den Wert "1" im Objekt 60FDh) auf Öffner-Logik (der logische High-Pegel am Eingang ergibt den Wert "0").
 Das gilt für die Sonderfunktionen (außer den Takt- und Richtungseingängen) und für die normalen Eingänge. Hat das Bit den Wert "0" gilt Schließer-Logik, entsprechend bei dem Wert "1" die Öffner-Logik. Bit 0 wechselt die Logik des Eingangs 1, Bit 1 die Logik des Eingangs 2 usw.

- **3240h:03h (Force Enable):** Dieser Subindex schaltet die Sofwaresimulation von Eingangswerten ein, wenn das entsprechende Bit auf "1" gesetzt ist. Dann werden nicht mehr die tatsächlichen, sondern die in Objekt 3240h:04h eingestellten Werte für den jeweiligen Eingang verwendet. Bit 0 entspricht dabei dem Eingang 1, Bit 1 dem Eingang 2 usw.

- **3240h:04h (Force Value):** Dieses Bit gibt den Wert vor, der als Eingangswert eingelesen werden soll, wenn das gleiche Bit im Objekt 3240h:03h gesetzt wurde.

- **3240h:05h (Raw Value):** Dieses Objekt beinhaltet den unmodifizierten Eingangswert.

- **60FDh (Digital Inputs):** Dieses Objekt enthält eine Zusammenfassung der Eingänge und der Sonderfunktionen.

Verrechnung der Eingänge

Verrechnung des Eingangssignals am Beispiel von Eingang 1:

Der Wert an Bit 0 des Objekts 60FDh wird von der Firmware als negativer Endschalter interpretiert, das Ergebnis der vollständigen Verrechnung wird in Bit 16 abgelegt.
Input Routing

Prinzip
Um die Zuordnung der Eingänge flexibler vornehmen zu können, existiert der sogenannte Input Routing Modus. Dieser weist ein Signal einer Quelle auf ein Bit in dem Objekt \(60FD_h\) zu.

Aktivierung
Dieser Modus wird aktiviert, indem das Objekt \(3240h:08h\) (Routing Enable) auf 1 gesetzt wird.

Hinweis
Die Einträge \(3240h:01h\) bis \(3240h:04h\) haben dann keine Funktion mehr, bis das Eingangsrouting wieder abgeschaltet wird.

Hinweis
Wird das Input Routing eingeschaltet, werden initial die Werte des \(3242h\) geändert und entsprechen der Funktion der Inputs, wie diese vor der Aktivierung des Input Routing war. Die Eingänge der Steuerung verhalten sich mit der Aktivierung des Input Routing gleich. Es sollte daher nicht zwischen dem normalen Modus und dem Input Routing hin- und her geschalten werden.

Routing
Das Objekt \(3242h\) bestimmt, welche Signalquelle auf welches Bit des \(60FD_h\) geroutet wird. Der Subindex \(01h\) des \(3242h\) bestimmt Bit 0, Subindex \(02h\) das Bit 1, und so weiter. Die Signalquellen und deren Nummern finden Sie in den nachfolgenden Listen.

<table>
<thead>
<tr>
<th>Nummer</th>
<th>dec</th>
<th>hex</th>
<th>Signalquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>00</td>
<td>Signal ist immer 0</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>01</td>
<td>Physikalischer Eingang 1</td>
</tr>
<tr>
<td>02</td>
<td>02</td>
<td>02</td>
<td>Physikalischer Eingang 2</td>
</tr>
<tr>
<td>03</td>
<td>03</td>
<td>03</td>
<td>Physikalischer Eingang 3</td>
</tr>
<tr>
<td>04</td>
<td>04</td>
<td>04</td>
<td>Physikalischer Eingang 4</td>
</tr>
<tr>
<td>05</td>
<td>05</td>
<td>05</td>
<td>Physikalischer Eingang 5</td>
</tr>
<tr>
<td>06</td>
<td>06</td>
<td>06</td>
<td>Physikalischer Eingang 6</td>
</tr>
<tr>
<td>07</td>
<td>07</td>
<td>07</td>
<td>Physikalischer Eingang 7</td>
</tr>
<tr>
<td>08</td>
<td>08</td>
<td>08</td>
<td>Physikalischer Eingang 8</td>
</tr>
<tr>
<td>09</td>
<td>09</td>
<td>09</td>
<td>Physikalischer Eingang 9</td>
</tr>
<tr>
<td>10</td>
<td>0A</td>
<td>0A</td>
<td>Physikalischer Eingang 10</td>
</tr>
<tr>
<td>11</td>
<td>0B</td>
<td>0B</td>
<td>Physikalischer Eingang 11</td>
</tr>
<tr>
<td>12</td>
<td>0C</td>
<td>0C</td>
<td>Physikalischer Eingang 12</td>
</tr>
<tr>
<td>13</td>
<td>0D</td>
<td>0D</td>
<td>Physikalischer Eingang 13</td>
</tr>
<tr>
<td>14</td>
<td>0E</td>
<td>0E</td>
<td>Physikalischer Eingang 14</td>
</tr>
<tr>
<td>Nummer</td>
<td>dec</td>
<td>hex</td>
<td>Signalquelle</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>15</td>
<td>0F</td>
<td>15</td>
<td>Physikalischer Eingang 15</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>16</td>
<td>Physikalischer Eingang 16</td>
</tr>
<tr>
<td>65</td>
<td>41</td>
<td>"U"</td>
<td>Hall Eingang "U"</td>
</tr>
<tr>
<td>66</td>
<td>42</td>
<td>"V"</td>
<td>Hall Eingang "V"</td>
</tr>
<tr>
<td>67</td>
<td>43</td>
<td>"W"</td>
<td>Hall Eingang "W"</td>
</tr>
<tr>
<td>68</td>
<td>44</td>
<td>"A"</td>
<td>Encoder Eingang "A"</td>
</tr>
<tr>
<td>69</td>
<td>45</td>
<td>"B"</td>
<td>Encoder Eingang "B"</td>
</tr>
<tr>
<td>70</td>
<td>46</td>
<td>"Index"</td>
<td>Encoder Eingang "Index"</td>
</tr>
</tbody>
</table>

Die nachfolgende Tabelle beschreibt die invertierten Signale der vorherigen Tabelle.

<table>
<thead>
<tr>
<th>Nummer</th>
<th>dec</th>
<th>hex</th>
<th>Signalquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>80</td>
<td>1</td>
<td>Signal ist immer 1</td>
</tr>
<tr>
<td>129</td>
<td>81</td>
<td>2</td>
<td>Invertierter physikalischer Eingang 1</td>
</tr>
<tr>
<td>130</td>
<td>82</td>
<td>3</td>
<td>Invertierter physikalischer Eingang 2</td>
</tr>
<tr>
<td>131</td>
<td>83</td>
<td>4</td>
<td>Invertierter physikalischer Eingang 3</td>
</tr>
<tr>
<td>132</td>
<td>84</td>
<td>5</td>
<td>Invertierter physikalischer Eingang 4</td>
</tr>
<tr>
<td>133</td>
<td>85</td>
<td>6</td>
<td>Invertierter physikalischer Eingang 5</td>
</tr>
<tr>
<td>134</td>
<td>86</td>
<td>7</td>
<td>Invertierter physikalischer Eingang 6</td>
</tr>
<tr>
<td>135</td>
<td>87</td>
<td>8</td>
<td>Invertierter physikalischer Eingang 7</td>
</tr>
<tr>
<td>136</td>
<td>88</td>
<td>9</td>
<td>Invertierter physikalischer Eingang 8</td>
</tr>
<tr>
<td>137</td>
<td>89</td>
<td>10</td>
<td>Invertierter physikalischer Eingang 9</td>
</tr>
<tr>
<td>138</td>
<td>8A</td>
<td>11</td>
<td>Invertierter physikalischer Eingang 10</td>
</tr>
<tr>
<td>139</td>
<td>8B</td>
<td>12</td>
<td>Invertierter physikalischer Eingang 11</td>
</tr>
<tr>
<td>140</td>
<td>8C</td>
<td>13</td>
<td>Invertierter physikalischer Eingang 12</td>
</tr>
<tr>
<td>141</td>
<td>8D</td>
<td>14</td>
<td>Invertierter physikalischer Eingang 13</td>
</tr>
<tr>
<td>142</td>
<td>8E</td>
<td>15</td>
<td>Invertierter physikalischer Eingang 14</td>
</tr>
<tr>
<td>143</td>
<td>8F</td>
<td>16</td>
<td>Invertierter physikalischer Eingang 15</td>
</tr>
<tr>
<td>193</td>
<td>C1</td>
<td>"U"</td>
<td>Invertierter Hall Eingang "U"</td>
</tr>
<tr>
<td>194</td>
<td>C2</td>
<td>"V"</td>
<td>Invertierter Hall Eingang "V"</td>
</tr>
<tr>
<td>195</td>
<td>C3</td>
<td>"W"</td>
<td>Invertierter Hall Eingang "W"</td>
</tr>
<tr>
<td>196</td>
<td>C4</td>
<td>"A"</td>
<td>Invertierter Encoder Eingang "A"</td>
</tr>
<tr>
<td>197</td>
<td>C5</td>
<td>"B"</td>
<td>Invertierter Encoder Eingang "B"</td>
</tr>
<tr>
<td>198</td>
<td>C6</td>
<td>"Index"</td>
<td>Invertierter Encoder Eingang "Index"</td>
</tr>
</tbody>
</table>

Beispiel

Es soll der Eingang 1 auf Bit 16 des Objekts 60FDh geroutet werden:

Die Nummer der Signalquelle für Eingang 1 ist die "1". Das Routing für Bit 16 wird in das 3242h:11h geschrieben.

Demnach muss das Objekt 3242h:11h auf den Wert "1" gesetzt werden.
8.1.4 Digitale Ausgänge

Ausgänge

Die Ausgänge werden über das Objekt 60FE\textsubscript{h} gesteuert. Dabei entspricht Ausgang 1 dem Bit 16 im Objekt 60FE\textsubscript{h}, Ausgang 2 dem Bit 17 usw. wie bei den Eingängen. Die ersten 4 I/O Pins können als Ausgänge konfiguriert werden, siehe Ein- und Ausgangsbelegung festlegen. Die Ausgänge mit Sonderfunktionen sind in der Firmware wieder in den unteren Bits 0 bis 15 eingetragen. Im Moment ist nur Bit 0 belegt, das die Motorbremse steuert.

Beschaltung

Hinweis

Beachten Sie immer die maximale Belastbarkeit des Ausgangs (siehe Anschlussbelegung).

Die digitalen Ausgänge, mit der Ausnahme des Bremsenausgangs, haben einen digitalen Pegel von 3,3 V DC. Die Strombelastbarkeit liegt bei 10mA.

Objekteinträge

Es existieren zusätzliche OD-Einträge, um den Wert der Ausgänge zu manipulieren (siehe dazu das nachfolgende Beispiel). Ähnlich wie bei den Eingängen wirkt immer nur das Bit an der entsprechenden Stelle auf den jeweiligen Ausgang:

- 3250\textsubscript{h}:01\textsubscript{h}: Keine Funktion.
- 3250\textsubscript{h}:02\textsubscript{h}: Damit lässt sich die Logik von Schließer auf Öffner umstellen. Als Schließer konfiguriert, gibt der Eingang einen logischen High-Pegel ab, sollte das Bit "1" sein. Bei der Öffner-Konfiguration wird bei einer "1" im Objekt 60FE\textsubscript{h} entsprechend ein logischer Low-Pegel ausgegeben.
- 3250\textsubscript{h}:03\textsubscript{h}: Ist hier ein Bit gesetzt, wird der Ausgang manuell gesteuert. Der Wert für den Ausgang steht dann in Objekt 3250\textsubscript{h}:04\textsubscript{h}, dies ist auch für den Bremsenausgang möglich.
- 3250\textsubscript{h}:04\textsubscript{h}: Die Bits in diesem Objekt geben den Ausgabewert vor, welcher am Ausgang angelegt sein soll, wenn die manuelle Steuerung des Ausgangs über das Objekt 3250\textsubscript{h}:03\textsubscript{h} aktiviert ist.
- 3250\textsubscript{h}:05\textsubscript{h}: Dieses Objekt besitzt keine Funktion und ist aus Gründen der Kompatibilität enthalten.

Verrechnung der Ausgänge

Beispiel für die Verrechnung der Bits für die Ausgänge:
Output Routing

Prinzip

Der "Output Routing Mode" weist einem Ausgang eine Signalquelle zu, ein Kontrollbit im Objekt 60FEh:01h schaltet das Signal ein oder aus.

Die Auswahl der Quelle wird mit 3252h:01 bis 05 im "High Byte" (Bit 15 bis Bit 8) gemacht. Die Zuordnung eines Kontrollbit aus dem Objekt 60FEh:01h erfolgt im "Low Byte" (Bit 7 bis Bit 0) des 3252h:01h bis 05 (siehe nachfolgende Abbildung).
Aktivierung

Dieser Modus wird aktiviert, indem das Objekt 3250h:08h (Routing Enable) auf 1 gesetzt wird.

Hinweis

Die Einträge 3250h:01h bis 3250h:04h haben dann keine Funktion mehr, bis das "Ausgangsrouteing" wieder abgeschaltet wird.

Routing

Der Subindex des Objekts 3252h, bestimmt, welche Signalquelle auf welchen Ausgang geroutet wird. Die Zuordnung der Ausgänge ist nachfolgend gelistet:

<table>
<thead>
<tr>
<th>Subindex 3252h</th>
<th>Output Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>01h</td>
<td>Konfiguration des PWM-Ausgangs (falls verfügbar)</td>
</tr>
<tr>
<td>02h</td>
<td>Konfiguration des Ausgangs 1</td>
</tr>
<tr>
<td>03h</td>
<td>Konfiguration des Ausgangs 2 (falls verfügbar)</td>
</tr>
<tr>
<td>04h</td>
<td>Konfiguration des Ausgangs 3 (falls verfügbar)</td>
</tr>
<tr>
<td>05h</td>
<td>Konfiguration des Ausgangs 4 (falls verfügbar)</td>
</tr>
</tbody>
</table>

Hinweis

Die maximale Ausgangsfrequenz des Ausgangs 1 und Ausgangs 2 ist 10kHz, des PWM-Ausgangs 2 kHz. Alle anderen Ausgänge können nur bis zu 500Hz Signale erzeugen.

Die Subindizes 3252h:01h bis 05h sind 16 Bit breit, wobei das High Byte die Signalquelle auswählt (z.B. den PWM-Generator) und das Low Byte bestimmt das Kontrollbit im Objekt 60FEh:01.

Bit 7 von 3252h:01h bis 05h invertiert die Steuerung aus dem Objekt 60FEh:01. Normalerweise schaltet der Wert "1" im Objekt 60FEh:01 das Signal "ein", ist das Bit 7 gesetzt, schaltet der Wert "0" das Signal ein.
Nummer in 3252:01 bis 05

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>00XX_h</td>
<td>Ausgang ist immer "1"</td>
</tr>
<tr>
<td>01XX_h</td>
<td>Ausgang ist immer "0"</td>
</tr>
<tr>
<td>02XX_h</td>
<td>Encodersignal (6063_h) mit Frequenzteiler 1</td>
</tr>
<tr>
<td>03XX_h</td>
<td>Encodersignal (6063_h) mit Frequenzteiler 2</td>
</tr>
<tr>
<td>04XX_h</td>
<td>Encodersignal (6063_h) mit Frequenzteiler 4</td>
</tr>
<tr>
<td>05XX_h</td>
<td>Encodersignal (6063_h) mit Frequenzteiler 8</td>
</tr>
<tr>
<td>06XX_h</td>
<td>Encodersignal (6063_h) mit Frequenzteiler 16</td>
</tr>
<tr>
<td>07XX_h</td>
<td>Encodersignal (6063_h) mit Frequenzteiler 32</td>
</tr>
<tr>
<td>08XX_h</td>
<td>Encodersignal (6063_h) mit Frequenzteiler 64</td>
</tr>
<tr>
<td>09XX_h</td>
<td>Position Actual Value (6064_h) mit Frequenzteiler 1</td>
</tr>
<tr>
<td>0AXX_h</td>
<td>Position Actual Value (6064_h) mit Frequenzteiler 2</td>
</tr>
<tr>
<td>0BXX_h</td>
<td>Position Actual Value (6064_h) mit Frequenzteiler 4</td>
</tr>
<tr>
<td>0CXX_h</td>
<td>Position Actual Value (6064_h) mit Frequenzteiler 8</td>
</tr>
<tr>
<td>0DXX_h</td>
<td>Position Actual Value (6064_h) mit Frequenzteiler 16</td>
</tr>
<tr>
<td>0EXX_h</td>
<td>Position Actual Value (6064_h) mit Frequenzteiler 32</td>
</tr>
<tr>
<td>0FXX_h</td>
<td>Position Actual Value (6064_h) mit Frequenzteiler 64</td>
</tr>
<tr>
<td>10XX_h</td>
<td>PWM-Signal, das mit Objekt 2038_h:05_h und 06_h konfiguriert wird</td>
</tr>
<tr>
<td>11XX_h</td>
<td>Invertiertes PWM-Signal, das mit Objekt 2038_h:05_h und 06_h konfiguriert wird</td>
</tr>
</tbody>
</table>

Beispiel

Das Encodersignal (6063_h) soll auf Ausgang 1 mit einem Frequenzteiler 4 gelegt werden. Der Ausgang soll mit Bit 5 des Objektes 60FE:01 gesteuert werden.

- 3250_h:08_h = 1 (Routing aktivieren)
- 3252_h:02_h = 0405_h (04XX_h + 0005_h) Dabei ist:
 - 04XX_h: Encodersignal mit Frequenzteiler 4
 - 0005_h: Auswahl von Bit 5 des 60FE:01

Das Einschalten des Ausgangs wird mit dem Setzen des Bit 5 in Objekt 60FE:01 erledigt.

Beispiel

Das Bremsen-PWM-Signal soll auf Ausgang 2 gelegt werden. Da die automatische Bremsensteuerung das Bit 0 des 60FE:01_h benutzt, soll dieses als Kontrollbit benutzt werden.

- 3250_h:08_h = 1 (Routing aktivieren)
- 3252_h:03_h = 1080_h (=10XX_h + 0080_h). Dabei gilt:
 - 10XX_h: Bremsen-PWM-Signal
 - 0080_h: Auswahl des invertierten Bits 0 des Objekts 60FE:01
8.2 Automatische Bremsensteuerung

8.2.1 Beschreibung

Die automatische Bremsensteuerung wird aktiv, wenn die Steuerung in den Zustand *Operation Enabled der CiA 402 Power State Machine* gebracht wird, sonst bleibt die Bremse immer geschlossen.

Der Bremsen-Ausgang der Steuerung resultiert in einem PWM-Signal, welches sich in der Frequenz und in dem Tastverhältnis einstellen lässt.

Für das Zusammenspiel der Bremse mit dem Motorstoppverhalten, lesen Sie auch das Kapitel *Power State machine - Bremsreaktionen*.

8.2.2 Aktivierung und Anschluss

Die Bremse kann entweder automatisch oder manuell gesteuert werden:

- Automatisch: Bit 2 des Objekts 3202h auf "1" setzen aktiviert die Bremsensteuerung.
- Manuell: Bit 2 des Objekts 3202h auf "0" setzen deaktiviert die Bremsensteuerung, die Bremse lässt sich jetzt mit dem Bit 0 im Objekt 60FEh:01h kontrollieren.

Anschluss

Der Bremsenausgang befindet sich:

- am Pin A48 der PCI-Steckleiste, siehe Anschlussbelegung und Beschaltung der Ausgänge
- am Stecker X2 des Discovery Boards, falls dieses verwendet wird, siehe Stecker X2 - Bremse

8.2.3 Steuerung der Bremse

8.2.4 Bremsen-PWM

Die eingeschaltete Bremse erzeugt am Ausgang der Steuerung ein PWM-Signal, welches im Tastgrad und der Frequenz eingestellt werden kann. Sollte ein Ausgangspin ohne PWM benötigt werden, lässt sich ein Tastgrad von 100 Prozent einstellen.
8 Spezielle Funktionen

Hinweis
Der PIN Bremse + des Bremsenausgangs ist mit der Spannungsversorgung der Steuerung verbunden.

Wenn die Betriebsspannung der Bremse größer als die Versorgungsspannung der Steuerung ist, können Sie den Bremsenausgang der Steuerung nicht nutzen, Sie müssen die Bremse extern versorgen.

Wenn die Versorgungsspannung der Steuerung größer als die Betriebsspannung der Bremse ist (und bis 48 V DC), wird empfohlen, den PWM-Regler von Nanotec mit der Bestellbezeichnung EB-BRAKE-48V zu verwenden und den Tastgrad des Bremsenausgangs der Steuerung auf "100" zu setzen.

Frequenz

Tastgrad

In nachfolgender Abbildung ist beispielhaft ein Tastgrad von 25 und 50 Prozent eingezeichnet, wobei die Frequenz beibehalten wurde.

8.3 I^2t Motor-Überlastungsschutz

8.3.1 Beschreibung

Hinweis
Für Schrittmotoren wird nur der Nennstrom und kein Maximalstrom angegeben. Daher erfolgt die Nutzung von I^2t mit Schrittmotoren ohne Gewähr.

Das Ziel des I^2t Motor-Überlastungsschutz ist es, den Motor vor einem Schaden zu bewahren und gleichzeitig, ihn normal bis zu seinem thermischen Limit zu betreiben.
Diese Funktion ist nur verfügbar, wenn sich die Steuerung in der **Closed Loop-Betriebsart** befindet (Bit 0 des Objekts 3202₉ muss auf "1" gesetzt sein).

Es gibt eine Ausnahme: Sollte \(\text{i}^{2}t \) im **Open Loop**-Betrieb aktiviert sein, wird der Strom auf den eingestellten Nennstrom begrenzt, auch wenn der eingestellte Maximalstrom größer ist. Diese Funktion wurde aus Sicherheitsgründen implementiert, damit man auch aus dem **Closed Loop**-Betrieb mit sehr hohem kurzzeitigem Maximalstrom in den **Open Loop**-Betrieb wechseln kann, ohne den Motor zu schädigen.

8.3.2 Objekteinträge

Folgende Objekte haben Einfluss auf den \(\text{i}^{2}t \) Motor-Überlastungsschutz:

- **2031₉**: Peak Current - Gibt den Maximalstrom in mA an.
- **203B₉:1₉**: Nominal Current - Gibt den Nennstrom in mA an.
- **203B₉:2₉**: Maximum Duration Of Peak Current - Gibt die maximale Dauer des Maximalstroms in ms an.

Folgende Objekte zeigen den gegenwärtigen Zustand von \(\text{i}^{2}t \) an:

- **203B₉:3₉**: Threshold - Gibt die Grenze in mAs an, von der abhängt, ob auf Maximalstrom oder Nennstrom geschaltet wird.
- **203B₉:4₉**: CalcValue - Gibt den berechneten Wert an, welcher mit Threshold verglichen wird, um den Strom einzustellen.
- **203B₉:5₉**: LimitedCurrent - Zeigt den gegenwärtigen Stromwert an, der von \(\text{i}^{2}t \) eingestellt wurde.
- **203B₉:6₉**: Status:
 - Wert = "0": \(\text{i}^{2}t \) deaktiviert
 - Wert = "1": \(\text{i}^{2}t \) aktiviert

8.3.3 Aktivierung

Der **Closed Loop** muss aktiviert sein (Bit 0 des Objekts 3202₉ auf "1" gesetzt, siehe auch Kapitel **Closed Loop**). Zum Aktivieren des Modus müssen die drei oben genannten Objekteinträge (2031₉, 203B₉:1₉, 203B₉:2₉) sinnvoll beschrieben worden sein. Das bedeutet, dass der Maximalstrom größer als der Nennstrom sein muss und ein Zeitwert für die maximale Dauer des Maximalstroms eingetragen sein muss. Wenn diese Bedingungen nicht erfüllt sind, bleibt die \(\text{i}^{2}t \) Funktionalität deaktiviert.

8.3.4 Funktion von \(\text{i}^{2}t \)

Durch die Angabe von Nennstrom, Maximalstrom und maximaler Dauer des Maximalstromes wird ein \(\text{i}^{2}T_{\text{Lim}} \) berechnet.

Der Motor kann solange mit Maximalstrom laufen, bis das berechnete \(\text{i}^{2}T_{\text{Lim}} \) erreicht wird. Darauffolgend wird der Strom sofort auf Nennstrom gesenkt.

Im folgenden Diagramm sind die Zusammenhänge noch einmal dargestellt.
8 Spezielle Funktionen

8.4 Objekte speichern

Hinweis

Die unsachgemäße Anwendung dieser Funktion kann dazu führen, dass die Steuerung sich nicht mehr starten lässt. Lesen Sie daher vor der Benutzung der Funktion das Kapitel vollständig durch.

8.4.1 Allgemeines

Viele Objekte im Objektverzeichnis lassen sich speichern und werden beim nächsten Einschalten/Reset automatisch wieder geladen. Zudem bleiben die gespeicherten Werte auch bei einem Firmware-Update erhalten.

Es lassen sich immer nur ganze Sammlungen von Objekten (im Folgenden *Kategorien* genannt) zusammen abspeichern, einzelne Objekte können nicht gespeichert werden.

Ein Objekt kann einer der folgenden *Kategorien* zugeordnet sein:

- Kommunikation: Parameter mit Bezug auf externe Schnittstellen, wie PDO-Konfiguration etc.
- Applikation: Parameter mit Bezug auf Betriebsmodi.
- Benutzer: Parameter, die ausschließlich vom Kunden/Benutzer geschrieben und gelesen, und von der Steuerungsfirmware ignoriert werden.
- Bewegung: Parameter mit Bezug auf den Motor und die Sensoren (BLDC/Stepper, Closed/Open Loop...). Einige werden vom Auto-Setup gesetzt und gespeichert.
- Tuning: Parameter mit Bezug auf Motor und Encoder, die entweder vom Auto-Setup gesetzt werden, oder den Datenblättern entnommen werden können, zum Beispiel Polpaare und Maximum Current.

Wenn ein Objekt keiner dieser *Kategorien* zugeordnet ist, kann es nicht gespeichert werden, zum Beispiel Statusword und alle Objekte, deren Wert abhängig vom aktuellen Zustand der Steuerung ist.
Die Objekte in jeder Kategorie werden unten aufgelistet. Im Kapitel Objektverzeichnis Beschreibung wird ebenfalls für jedes Objekt die zugehörige Kategorie angegeben.

8.4.2 Kategorie: Kommunikation

- \text{1600}_{\text{h}}: Receive PDO 1 Mapping Parameter
- \text{1601}_{\text{h}}: Receive PDO 2 Mapping Parameter
- \text{1602}_{\text{h}}: Receive PDO 3 Mapping Parameter
- \text{1603}_{\text{h}}: Receive PDO 4 Mapping Parameter
- \text{1A00}_{\text{h}}: Transmit PDO 1 Mapping Parameter
- \text{1A01}_{\text{h}}: Transmit PDO 2 Mapping Parameter
- \text{1A02}_{\text{h}}: Transmit PDO 3 Mapping Parameter
- \text{1A03}_{\text{h}}: Transmit PDO 4 Mapping Parameter
- \text{1C12}_{\text{h}}: Sync Manager PDO Assignment
- \text{1C13}_{\text{h}}: Sync Manager PDO Assignment
- \text{2102}_{\text{h}}: Fieldbus Module Control

8.4.3 Kategorie: Applikation

- \text{2034}_{\text{h}}: Upper Voltage Warning Level
- \text{2035}_{\text{h}}: Lower Voltage Warning Level
- \text{2036}_{\text{h}}: Open Loop Current Reduction Idle Time
- \text{2037}_{\text{h}}: Open Loop Current Reduction Value/factor
- \text{2038}_{\text{h}}: Brake Controller Timing
- \text{203A}_{\text{h}}: Homing On Block Configuration
- \text{203D}_{\text{h}}: Torque Window
- \text{203E}_{\text{h}}: Torque Window Time Out
- \text{203F}_{\text{h}}: Max Slippage Time Out
- \text{2056}_{\text{h}}: Limit Switch Tolerance Band
- \text{2057}_{\text{h}}: Clock Direction Multiplier
- \text{2058}_{\text{h}}: Clock Direction Divider
- \text{205B}_{\text{h}}: Clock Direction Or Clockwise/Counter Clockwise Mode
- \text{2084}_{\text{h}}: Bootup Delay
- \text{2300}_{\text{h}}: NanoJ Control
- \text{2410}_{\text{h}}: NanoJ Init Parameters
- \text{2800}_{\text{h}}: Bootloader And Reboot Settings
- \text{3210}_{\text{h}}: Motor Drive Parameter Set
- \text{3212}_{\text{h}}: Motor Drive Flags
- \text{3221}_{\text{h}}: Analogue Inputs Control
- \text{3231}_{\text{h}}: Flex IO Configuration
- \text{3240}_{\text{h}}: Digital Inputs Control
- \text{3242}_{\text{h}}: Digital Input Routing
- \text{3243}_{\text{h}}: Digital Input Homing Capture
- \text{3250}_{\text{h}}: Digital Outputs Control
- \text{3252}_{\text{h}}: Digital Output Routing
- \text{3321}_{\text{h}}: Analogue Input Offset
- \text{3322}_{\text{h}}: Analogue Input Pre-scaling
- \text{3700}_{\text{h}}: Deviation Error Option Code
- \text{4013}_{\text{h}}: HW Configuration
- \text{6040}_{\text{h}}: Controlword
- \text{6042}_{\text{h}}: VI Target Velocity
- \text{6046}_{\text{h}}: VI Velocity Min Max Amount
- \text{6048}_{\text{h}}: VI Velocity Acceleration
- \text{6049}_{\text{h}}: VI Velocity Deceleration
8 Spezielle Funktionen

- \textbf{604A} \text{h}: Vl Velocity Quick Stop
- \textbf{604C} \text{h}: Vl Dimension Factor
- \textbf{605A} \text{h}: Quick Stop Option Code
- \textbf{605B} \text{h}: Shutdown Option Code
- \textbf{605C} \text{h}: Disable Option Code
- \textbf{605D} \text{h}: Halt Option Code
- \textbf{605E} \text{h}: Fault Option Code
- \textbf{6060} \text{h}: Modes Of Operation
- \textbf{6065} \text{h}: Following Error Window
- \textbf{6066} \text{h}: Following Error Time Out
- \textbf{6067} \text{h}: Position Window
- \textbf{6068} \text{h}: Position Window Time
- \textbf{606D} \text{h}: Velocity Window
- \textbf{606E} \text{h}: Velocity Window Time
- \textbf{6071} \text{h}: Target Torque
- \textbf{6072} \text{h}: Max Torque
- \textbf{607A} \text{h}: Target Position
- \textbf{607B} \text{h}: Position Range Limit
- \textbf{607C} \text{h}: Home Offset
- \textbf{607D} \text{h}: Software Position Limit
- \textbf{607E} \text{h}: Polarity
- \textbf{607F} \text{h}: Max Profile Velocity
- \textbf{6081} \text{h}: Profile Velocity
- \textbf{6082} \text{h}: End Velocity
- \textbf{6083} \text{h}: Profile Acceleration
- \textbf{6084} \text{h}: Profile Deceleration
- \textbf{6085} \text{h}: Quick Stop Deceleration
- \textbf{6086} \text{h}: Motion Profile Type
- \textbf{6087} \text{h}: Torque Slope
- \textbf{6091} \text{h}: Gear Ratio
- \textbf{6092} \text{h}: Feed Constant
- \textbf{6096} \text{h}: Velocity Factor
- \textbf{6097} \text{h}: Acceleration Factor
- \textbf{6098} \text{h}: Homing Method
- \textbf{6099} \text{h}: Homing Speed
- \textbf{609A} \text{h}: Homing Acceleration
- \textbf{60A2} \text{h}: Jerk Factor
- \textbf{60A4} \text{h}: Profile Jerk
- \textbf{60A8} \text{h}: SI Unit Position
- \textbf{60A9} \text{h}: SI Unit Velocity
- \textbf{60B0} \text{h}: Position Offset
- \textbf{60B1} \text{h}: Velocity Offset
- \textbf{60B2} \text{h}: Torque Offset
- \textbf{60C1} \text{h}: Interpolation Data Record
- \textbf{60C2} \text{h}: Interpolation Time Period
- \textbf{60C4} \text{h}: Interpolation Data Configuration
- \textbf{60C5} \text{h}: Max Acceleration
- \textbf{60C6} \text{h}: Max Deceleration
- \textbf{60ED} \text{h}: Additional Gear Ratio - Motor Shaft Revolutions
- \textbf{60EE} \text{h}: Additional Feed Constant - Feed
- \textbf{60FA} \text{h}: Positioning Option Code
• 60F8\text{h}: Max Slippage
• 60FE\text{h}: Digital Outputs
• 60FF\text{h}: Target Velocity

8.4.4 Kategorie: Benutzer

• 2701\text{h}: Customer Storage Area

8.4.5 Kategorie: Bewegung

• 3202\text{h}: Motor Drive Submode Select
• 3203\text{h}: Feedback Selection

8.4.6 Kategorie: Tuning

• 2030\text{h}: Pole Pair Count
• 2031\text{h}: Maximum Current
• 203B\text{h}: I2t Parameters
• 2059\text{h}: Encoder Configuration
• 3390\text{h}: Feedback Hall
• 33A0\text{h}: Feedback Incremental A/B/I 1
• 33A1\text{h}: Feedback Incremental A/B/I 2
• 6075\text{h}: Motor Rated Current
• 6080\text{h}: Max Motor Speed
• 608F\text{h}: Position Encoder Resolution
• 6090\text{h}: Velocity Encoder Resolution
• 60E6\text{h}: Additional Position Encoder Resolution - Encoder Increments
• 60EB\text{h}: Additional Position Encoder Resolution - Motor Revolutions

8.4.7 Kategorie: CANopen

• PLACEHOLDER CANOPEN

8.4.8 Kategorie: Modbus RTU

• PLACEHOLDER MODBUSRTU

8.4.9 Kategorie: Ethernet

• PLACEHOLDER ETHERNET

8.4.10 Kategorie: Profibus

• PLACEHOLDER PROFIBUS

8.4.11 Speichervorgang starten

\textbf{VORSICHT}

\textbf{Unkontrollierte Motorbewegungen!}

Während des Speicherns kann die Regelung beeinträchtigt werden. Es kann zu unvorhersehbaren Reaktionen kommen.

► Bevor Sie den Speichervorgang starten, muss der Motor sich im Stillstand befinden. Der Motor darf während des Speicherns nicht angefahren werden.
8 Spezielle Funktionen

Hinweis

- Das Speichern kann einige Sekunden dauern. Unterbrechen Sie während des Speicherns keinesfalls die Spannungsversorgung. Andernfalls ist der Stand der gespeicherten Objekte undefiniert.
- Warten Sie immer, dass die Steuerung das erfolgreiche Speichern mit dem Wert "1" in dem entsprechenden Subindex im Objekt \texttt{1010h} signalisiert.

Für jede \textit{Kategorie} gibt es einen Subindex im Objekt \texttt{1010h}. Um alle Objekte dieser \textit{Kategorie} zu speichern, muss der Wert "65766173h" \(^2\) in den Subindex geschrieben werden. Das Ende des Speichervorgangs wird signalisiert, indem der Wert von der Steuerung durch eine "1" überschrieben wird.

Nachfolgende Tabelle listet auf, welcher Subindex des Objektes \texttt{1010h} für welche \textit{Kategorie} zuständig ist.

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Kategorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>01\texttt{h}</td>
<td>Alle Kategorien mit der Ausnahme von 06\texttt{h} (Tuning)</td>
</tr>
<tr>
<td>02\texttt{h}</td>
<td>Kommunikation</td>
</tr>
<tr>
<td>03\texttt{h}</td>
<td>Applikation</td>
</tr>
<tr>
<td>04\texttt{h}</td>
<td>Benutzer</td>
</tr>
<tr>
<td>05\texttt{h}</td>
<td>Bewegung</td>
</tr>
<tr>
<td>06\texttt{h}</td>
<td>Tuning</td>
</tr>
</tbody>
</table>

8.4.12 Speicherung verwerfen

Falls alle Objekte oder eine \textit{Kategorie} an gespeicherten Objekten gelöscht werden sollen, muss in das Objekt \texttt{1011h} der Wert "64616F6C\texttt{h}" \(^3\) geschrieben werden. Folgende Subindizes entsprechen dabei einer \textit{Kategorie}:

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Kategorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>01\texttt{h}</td>
<td>Alle Kategorien (Zurücksetzen auf Werkseinstellung) mit der Ausnahme von 06\texttt{h} (Tuning)</td>
</tr>
<tr>
<td>02\texttt{h}</td>
<td>Kommunikation</td>
</tr>
<tr>
<td>03\texttt{h}</td>
<td>Applikation</td>
</tr>
<tr>
<td>04\texttt{h}</td>
<td>Benutzer</td>
</tr>
<tr>
<td>05\texttt{h}</td>
<td>Bewegung</td>
</tr>
<tr>
<td>06\texttt{h}</td>
<td>Tuning</td>
</tr>
</tbody>
</table>

Die gespeicherten Objekte werden daraufhin verworfen, die Änderung wirkt erst nach einem Neustart der Steuerung aus. Sie können sie Steuerung neu starten, indem Sie den Wert "746F6627\texttt{h}" in \texttt{2800h:01h} eintragen.

\(^2\) Das entspricht dezimal der 1702257011\texttt{d} bzw. dem ASCII String \texttt{save}.

\(^3\) Das entspricht dezimal der 1684107116\texttt{d} bzw. dem ASCII String \texttt{load}.
8 Spezielle Funktionen

8.4.13 Konfiguration verifizieren

Das Objekt \(1020_h\) kann herangezogen werden, um die Konfiguration zu verifizieren. Es agiert wie ein Modifikationsmarker in üblichen Text-Editoren: Sobald eine Datei in dem Editor modifiziert wird, wird ein Marker (normalerweise ein Stern) hinzugefügt.

Die Einträge des Objektes \(1020_h\) können mit einem Datum und einer Uhrzeit beschrieben und anschließend über \(1010_h:01\) zusammen mit allen anderen speicherbaren Objekten gespeichert werden.

Die Einträge von \(1020_h\) werden auf "0" zurückgesetzt, sobald ein beliebiges speicherbares Objekt (einschließlich \(1010_h:0x\), außer \(1010_h:01\) und \(1020_h\)) beschrieben wird.

Die folgende Reihenfolge macht die Verifikation möglich:

1. Ein externes Tool oder Master konfiguriert die Steuerung.
2. Das Tool oder der Master setzt den Wert in das Objekt \(1020_h\).
3. Das Tool oder der Master aktiviert das Speichern aller Objekte \(1010_h:01 = 65766173_h\). Das Datum und die Uhrzeit im Objekt \(1020_h\) werden ebenfalls abgespeichert.

Nach einem Neustart der Steuerung kann der Master den Wert in \(1020_h:01\) und \(1020:01\) prüfen. Sollte einer der Werte "0" sein, wurde das Objektverzeichnis verändert, nachdem die gespeicherten Werte geladen wurden. Sollten das Datum oder die Uhrzeit in \(1020\) nicht den erwarteten Werten entsprechen, wurden Objekte wahrscheinlich mit anderen als den erwarteten Werten gespeichert.
9 EtherCAT

- ETG.1000.1 - Overview, Date: 03.01.2013, Version 1.0.3
- ETG.1000.2 - Physical Layer service and protocol specification, Date: 03.01.2013, Version 1.0.3
- ETG.1000.3 - Data Link Layer service definition, Date: 03.01.2013, Version 1.0.3
- ETG.1000.4 - Data-link layer protocol specification, Date: 03.01.2013, Version 1.0.3
- ETG.1000.5 - Application layer service definition, Date: 03.01.2013, Version 1.0.3
- ETG.1000.6 - Application layer protocol specification, Date: 03.01.2013, Version 1.0.3
- ETG.1300 - Indicator and Labeling specification, Date: 11.11.2014, Version 1.1.0.2
10 Programmierung mit NanoJ

10.1 NanoJ-Programm

Durch Verwendung von Schutzmechanismen wird verhindert, dass ein NanoJ-Programm die Firmware zum Absturz bringt. Im schlimmsten Fall wird die Ausführung mit einem im Objektverzeichnis hinterlegten Fehlercode abgebrochen.

Wenn das NanoJ-Programm auf die Steuerung geladen wurde, wird es nach dem Einschalten oder Neustarten der Steuerung automatisch ausgeführt.

10.1.1 Verfügbare Rechenzeit

Ein NanoJ-Programm erhält zyklisch im 1 ms-Takt Rechenzeit (siehe folgende Abbildung). Da durch Interrupts und Systemfunktionen der Firmware Rechenzeit verloren geht, stehen dem Benutzerprogramm (abhängig von Betriebsart und Anwendungsfall) nur ca. 30% ... 50% Rechenzeit zur Verfügung. In dieser Zeit muss das Benutzerprogramm den Zyklus durchlaufen und entweder beenden oder durch Aufruf der Funktion yield() die Rechenzeit abgeben. Bei Ersterem wird das Benutzerprogramm mit dem Beginn des nächsten 1 ms-Zyklus wieder neu gestartet, letzteres bewirkt eine Fortsetzung des Programms an dem der Funktion yield() nachfolgenden Befehl beim nächsten 1 ms-Zyklus.

Falls das NanoJ-Programm mehr als die ihm zugeteilte Zeit benötigt, wird es beendet und im Objektverzeichnis ein Fehlercode gesetzt.

Bei der Entwicklung von Benutzerprogrammen ist speziell bei zeitintensiveren Aufgaben eine sorgfältige Überprüfung des Laufterzeitverhaltens durchzuführen. So empfiehlt sich beispielsweise die Verwendung von Tabellen, anstatt einen Sinuswert über eine \texttt{sin} Funktion zu berechnen.
Hinweis

Sollte das NanoJ-Programm zu lange die Rechenzeit nicht abgeben, wird es vom Betriebssystem beendet. In diesem Fall wird in das Statusword bei Objekt 2301\textsubscript{h} die Ziffer 4 eingetragen, im Fehlerregister bei Objekt 2302\textsubscript{h} wird die Ziffer 5 (Timeout) notiert, siehe 2301h NanoJ Status und 2302h NanoJ Error Code.

10.1.2 Sandbox

10.1.3 NanoJ-Programm - Kommunikationsmöglichkeiten

Ein NanoJ-Programm hat mehrere Möglichkeiten, mit der Steuerung zu kommunizieren:

- Lesen und Schreiben von OD-Werten per PDO-Mapping
- direktes Lesen und Schreiben von OD-Werten über Systemcalls
- Aufruf sonstiger Systemcalls (z. B. Debug-Ausgabe schreiben)

Um die Performance zu optimieren, werden dabei drei Arten von Mappings definiert: Input, Output und Input/Output (In, Out, InOut).

- Input Mappings lassen sich nur lesen und werden nicht zurück ins Objektverzeichnis übertragen.
- Output Mappings lassen sich nur schreiben.
- Input/Output Mappings erlauben hingegen Lesen und Schreiben.

Die gesetzten Mappings können über die GUI bei den Objekten 2310\textsubscript{h}, 2320\textsubscript{h}, und 2330\textsubscript{h} ausgelesen und überprüft werden. Für jedes Mapping sind maximal 16 Einträge erlaubt.

Über die Angabe der Linker-Section wird in NanoJEasy gesteuert, ob eine Variable im Input-, Output- oder Datenbereich abgelegt wird.

10.1.4 NanoJ-Programm ausführen

Zusammengefasst besteht das NanoJ-Programm bei der Ausführung eines Zyklus hinsichtlich des PDO-Mappings aus folgenden drei Schritten:

1. Werte aus dem Objektverzeichnis lesen und in die Bereiche Inputs und Outputs kopieren
2. Benutzerprogramm ausführen
3. Werte aus den Bereichen Outputs und Inputs zurück in das Objektverzeichnis kopieren

Die Konfiguration der Kopiervorgänge ist dem CANopen-Standard angelehnt.

10 Programmierung mit NanoJ

Tipp
Nanotec empfiehlt: Häufig genutzte und veränderte OD-Einträge mappen und auf weniger häufig genutzte OD-Einträge per Systemcall zuzugreifen.

Eine Liste verfügbarer Systemcalls findet sich im Kapitel Systemcalls im NanoJ-Programm.

Tipp
Nanotec empfiehlt, entweder per Mapping oder Systemcall mit od_write() auf ein und denselben OD-Wert zuzugreifen. Wird beides gleichzeitig verwendet, so hat der Systemcall keine Auswirkung.

10.1.5 NanoJ-Programm OD-Einträge

Das NanoJ-Programm wird durch OD-Einträge im Objekt-Bereich 2300h bis 2330h gesteuert und konfiguriert (siehe 2300h NanoJ Control).

<table>
<thead>
<tr>
<th>OD-Index</th>
<th>Name und Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2300h</td>
<td>2300h NanoJ Control</td>
</tr>
<tr>
<td>2301h</td>
<td>2301h NanoJ Status</td>
</tr>
<tr>
<td>2302h</td>
<td>2302h NanoJ Error Code</td>
</tr>
<tr>
<td>2310h</td>
<td>2310h NanoJ Input Data Selection</td>
</tr>
<tr>
<td>2320h</td>
<td>2320h NanoJ Output Data Selection</td>
</tr>
<tr>
<td>2330h</td>
<td>2330h NanoJ In/output Data Selection</td>
</tr>
</tbody>
</table>

Beispiel:
Um das Benutzerprogramm TEST1.USR zu starten, kann z. B. folgende Sequenz benutzt werden:

• Überprüfen des Eintrags 2302h auf Fehlercode.
• Wenn kein Fehler: NanoJ-Programm starten durch Beschreiben von Objekt 2300h, Bit 0 = "1".

Hinweis
Das Starten des NanoJ Programms kann bis zu 200 ms dauern.

• Überprüfen des Eintrags 2302h auf Fehlercode und des Objekts 2301h, Bit 0 = "1".
Um ein laufendes Programm anzuhalten: Beschreiben des Eintrags 2300h, mit dem Bit 0 Wert = "0".

10.1.6 Aufbau NanoJ-Programm

Ein Benutzerprogramm besteht aus mindestens zwei Anweisungen:
• der Präprozessoranweisung #include "wrapper.h"
• der Funktion void user(){}

In der Funktion void user() lässt sich der auszuführende Code hinterlegen.
Hinweis

Die Dateinamen der Benutzerprogramme dürfen nicht länger als acht Zeichen sein und drei Zeichen im Suffix enthalten; Dateiname `main.cpp` ist zulässig, Dateiname `einLangerDateiname.cpp` ist nicht zulässig.

Hinweis

In *NanoJ-Programmen* dürfen globale Variablen ausschließlich innerhalb von Funktionen initialisiert werden. Daraus folgt:

- kein `new` Operator
- keine Konstruktionen
- keine Initialisierung von globalen Variablen außerhalb von Funktionen

Beispiele:

Die globale Variable soll erst innerhalb der Funktion `void user()` initialisiert werden:

```cpp
unsigned int i;
void user(){
    i = 1;
    i += 1;
}
```

Folgende Zuweisung ist nicht korrekt:

```cpp
unsigned int i = 1;
void user() {
    i += 1;
}
```

10.1.7 *NanoJ-Programmbeispiel*

Das Beispiel zeigt das Programmieren eines Rechtecksignals in das Objekt `2500:h:01h`.

```cpp
// file main.cpp
map S32 outputReg1 as inout 0x2500:1
#include "wrapper.h"

// user program
void user()
{
    U16 counter = 0;
    while( 1 )
    {
        ++counter;
        if( counter < 100 )
            InOut.outputReg1 = 0;
        else if( counter < 200 )
            InOut.outputReg1 = 1;
        else
            counter = 0;
        // yield() 5 times (delay 5ms)
        for(U08 i = 0; i < 5; ++i )
            yield();
    }
} // eof
```
Weitere Beispiele finden Sie auf www.nanotec.de.

10.2 Mapping im NanoJ-Programm

Mit dieser Methode wird eine Variable im NanoJ-Programm direkt mit einem Eintrag im Objektverzeichnis verknüpf. Das Anlegen des Mappings muss dabei am Anfang der Datei stehen - noch vor der `#include "wrapper.h"`-Anweisung. Ein Kommentar oberhalb des Mappings ist erlaubt.

Tipp

Nanotec empfiehlt:

- Benutzen Sie das Mapping, falls Sie den Zugriff auf ein Objekt im Objektverzeichnis häufiger benötigen, z. B. das Controlword 6040h oder das Statusword 6041h.
- Für den einzelnen Zugriff auf Objekte bieten sich eher die Funktionen `od_write()` und `od_read()` an, siehe Zugriff auf das Objektverzeichnis.

10.2.1 Deklaration des Mappings

Die Deklaration des Mappings gliedert sich dabei folgendermaßen:

```
map <TYPE> <NAME> as <input|output|inout> <INDEX>:<SUBINDEX>
```

Dabei gilt:

- **<TYPE>**
 Der Datentyp der Variable; U32, U16, U08, S32, S16 oder S08.
- **<NAME>**
 Der Name der Variable; wie sie im Benutzerprogramm verwendet wird.
- **<input|output|inout>**
 Die Schreib- und Leserechtigung einer Variable: Eine Variable kann entweder als input, output oder inout deklariert werden. Damit wird festgelegt, ob eine Variable lesbar (input), schreibbar (output) oder beides ist (inout) und über welche Struktur sie im Programm angesprochen werden muss.
- **<INDEX>:<SUBINDEX>**
 Index und Subindex des zu mappenden Objekts im Objektverzeichnis.

Jede deklarierte Variable wird im Benutzerprogramm über eine der drei Strukturen In, Out oder InOut angesprochen, je nach definierter Schreib- und Leserichtung.

10.2.2 Beispiel eines Mappings

Beispiel eines Mappings und der zugehörigen Variablenufrgriffe:

```c
map U16 controlWord as output 0x6040:00
map U08 statusWord as input 0x6041:00
map U08 modeOfOperation as inout 0x6060:00
#include "wrapper.h"

void user()
{
    [...]
    Out.controlWord = 1;
```
U08 tmpVar = In.statusword;
InOut.modeOfOperation = tmpVar;
}

10.2.3 Möglicher Fehler bei od_write()

Eine mögliche Fehlerquelle ist ein schreibender Zugriff mittels der Funktion od_write() (siehe Systemcalls im NanoJ-Programm) auf ein Objekt im Objektverzeichnis, welches gleichzeitig als Mapping angelegt wurde. Nachfolgend aufgelisteter Code ist fehlerhaft:

map U16 controlWord as output 0x6040:00
#include "wrapper.h"
void user()
{

 Out.controlWord = 1;

 od_write(0x6040, 0x00, 5); // der Wert wird durch das Mapping überschrieben

}

Die Zeile mit dem Befehl od_write(0x6040, 0x00, 5); ist wirkungslos. Wie in der Einleitung beschrieben, werden alle Mappings am Ende jeder Millisekunde in das Objektverzeichnis kopiert. Damit ergibt sich folgender Ablauf:

1. Die Funktion od_write schreibt den Wert 5 in das Objekt 6040:00h.
2. Am Ende des 1 ms-Zyklus wird das Mapping geschrieben, welches ebenfalls das Objekt 6040:00h beschreibt, allerdings mit dem Wert 1.

10.3 Systemcalls im NanoJ-Programm

10.3.1 Zugriff auf das Objektverzeichnis

void od_write (U32 index, U32 subindex, U32 value)
Diese Funktion schreibt den übergebenen Wert an die angegebene Stelle in das Objektverzeichnis.

<table>
<thead>
<tr>
<th>index</th>
<th>Index des zu schreibenden Objekts im Objektverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>subindex</td>
<td>Subindex des zu schreibenden Objekts im Objektverzeichnis</td>
</tr>
<tr>
<td>value</td>
<td>zu schreibender Wert</td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748 115
Es wird dringend empfohlen, nach dem Aufruf eines `od_write()` die Prozessorzeit mit `yield()` abzugeben. Der Wert wird zwar sofort ins OD geschrieben. Damit die Firmware jedoch davon abhängige Aktionen auslösen kann, muss diese Rechenzeit erhalten und somit das Benutzerprogramm beendet oder mit `yield()` unterbrochen worden sein.

U32 `od_read(index, subindex)`
Diese Funktion liest den Wert an der angegebenen Stelle aus dem Objektverzeichnis und gibt ihn zurück.

<table>
<thead>
<tr>
<th>index</th>
<th>Index des zu lesenden Objekts im Objektverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>subindex</td>
<td>Subindex des zu lesenden Objekts im Objektverzeichnis</td>
</tr>
<tr>
<td>Rückgabewert</td>
<td>Inhalt des OD-Eintrags</td>
</tr>
</tbody>
</table>

Aktives Warten auf einen Wert im Objektverzeichnis sollte immer mit einem `yield()` verbunden werden.

Beispiel

```c
while (od_read(2400,2) != 0) // wait until 2400:2 is set
    yield();
```

10.3.2 Prozesssteuerung

`void yield()`
Diese Funktion gibt die Prozessorzeit wieder an das Betriebssystem ab. Das Programm wird in der nächsten Zeitscheibe wieder an der Stelle nach dem Aufruf fortgesetzt.

`void sleep(U32 ms)`
Diese Funktion gibt die Prozessorzeit für die angegebene Zahl an Millisekunden an das Betriebssystem ab. Das Benutzerprogramm wird anschließend an der Stelle nach dem Aufruf fortgesetzt.

| ms | Zu wartende Zeit in Millisekunden |
11 Objektverzeichnis Beschreibung

11.1 Übersicht

In diesem Kapitel finden Sie eine Beschreibung aller Objekte. Sie finden hier Angaben zu:

- Funktionen
- Objektbeschreibungen ("Index")
- Wertebeschreibungen ("Subindices")
- Beschreibungen von Bits
- Beschreibung des Objekts

11.2 Aufbau der Objektbeschreibung

Die Beschreibung der Objekteinträge ist immer gleich aufgebaut und besteht im Normalfall aus folgenden Abschnitten:

Funktion

In diesem Abschnitt wird kurz die Funktion des Objektverzeichnisses beschrieben.

Objektbeschreibung

Diese Tabelle gibt detailliert Auskunft über den Datentyp, Vorgabewerte und dergleichen. Eine genaue Beschreibung findet sich im Abschnitt "Objektbeschreibung"

Wertebeschreibung

Diese Tabelle ist nur bei dem Datentyp "Array" oder "Record" verfügbar und gibt genaue Auskunft über die Untereinträge. Eine genauere Beschreibung der Einträge findet sich im Abschnitt "Wertebeschreibung"

Beschreibung

Hier werden genauere Angaben zu den einzelnen Bits eines Eintrags gemacht oder eventuelle Zusammensetzungen erläutert. Eine genauere Beschreibung findet sich im Abschnitt "Beschreibung"

11.3 Objektbeschreibung

Die Objektbeschreibung besteht aus einer Tabelle, welche folgende Einträge enthält:

Index

Benennt den Index des Objekts in Hexadezimalschreibweise.

Objektname

Der Name des Objekts.

Object Code

Der Typ des Objekts. Das kann einer der folgenden Einträge sein:

- **VARIABLE**: In dem Fall besteht das Objekt nur aus einer Variable, die mit dem Subindex 0 indiziert wird.
- **ARRAY**: Diese Objekte bestehen immer aus einem Subindex 0 - welcher die Menge der Untereinträge angibt - und den Untereinträgen selber ab dem Index 1. Der Datentyp innerhalb eines Arrays ändert sich nie, das heißt, Untereintrag 1 und alle folgenden Einträge haben immer den gleichen Datentyp.
- **RECORD**: Diese Objekte bestehen immer aus einem Untereintrag mit dem Subindex 0 - welcher die Menge der Untereinträge angibt - und den Untereinträgen selber ab dem Index 1. Im Gegensatz zu einem ARRAY kann der Datentyp der Subeinträge variieren, das...
bedeutet, dass beispielsweise Untereintrag 1 einen anderen Datentyp als Untereintrag 2 haben kann.

- **VISIBLE_STRING**: Das Objekt beschreibt eine in ASCII codierte Zeichenkette. Die Länge des Strings wird in Subindex 0 angegeben, die einzelnen Zeichen sind ab Subindex 1 gespeichert. Diese Zeichenketten sind **nicht** durch ein Null-Zeichen terminiert.

Datentyp
Hier wird die Größe und die Interpretation des Objekts angegeben. Für den Object Code "VARIABLE" gilt folgende Schreibweise:

- Es wird unterschieden zwischen Einträgen die vorzeichenbehaftet sind, das wird mit dem Präfix "SIGNED" bezeichnet. Für die vorzeichenunbehafteten Einträge wird das Präfix "UNSIGNED" benutzt.
- Die Größe der Variable in Bit wird an das Präfix angestellt und kann entweder 8, 16 oder 32 sein.

Speicherbar
Hier wird beschreiben ob dieses Objekt speicherbar ist und wenn ja, unter welcher Kategorie.

Firmware Version
Hier ist die Firmwareversion eingetragen, ab der das Objekt verfügbar ist.

Änderungshistorie (ChangeLog)
Hier werden eventuelle Änderungen an dem Objekt notiert.

Zudem gibt es noch die Einträge für den Datentyp "VARIABLE" folgende Tabelleneinträge:

Zugriff
Hier wird die Zugriffsbeschränkung eingetragen. Folgende Beschränkungen gibt es:

- "lesen/schreiben": Das Objekt kann sowohl gelesen, als auch geschrieben werden
- "nur lesen": Das Objekt kann nur aus dem Objektverzeichnis gelesen werden. Setzen eines Werte ist nicht möglich.

PDO-Mapping
Einige Bussysteme, wie CANopen oder EtherCAT unterstützen ein PDO-Mapping. In diesem Tabelleneintrag wird beschrieben, ob das Objekt in ein Mapping eingefügt werden darf und in welches. Dabei gibt es folgende Bezeichnungen:

- "no": Das Objekt darf in kein Mapping eingetragen werden.
- "TX-PDO": Das Objekt darf in ein RX Mapping eingetragen werden.
- "RX-PDO": Das Objekt darf in ein TX Mapping eingetragen werden.

Zulässige Werte
In einigen Fällen ist es nur erlaubt, bestimmte Werte in das Objekt zu schreiben. Sollte das der Fall sein, werden diese Werte hier aufgelistet. Besteht keine Beschränkung bleibt das Feld leer.

Vorgabewert
Um die Steuerung beim Einschalten in einen gesicherten Zustand zu bringen ist es nötig, einige Objekte mit Werten vorzubehen. Der Wert, der beim Start der Steuerung in das Objekt geschrieben wird, wird in diesem Tabelleneintrag notiert.
11.4 Wertebeschreibung

In der Tabelle mit der Überschrift "Wertebeschreibung" werden alle Daten für Untereinträge mit Subindex 1 oder höher aufgelistet. Die Tabelle beinhaltet folgende Einträge:

Subindex
Nummer des aktuell beschriebenen Untereintrages.

Name
Der Name des Untereintrages.

Datentyp
Hier wird die Größe und die Interpretation des Untereintrages angegeben. Hier gilt immer folgende Schreibweise:
- Es wird unterschieden zwischen Einträgen die vorzeichenbehaftet sind, das wird mit dem Präfix "SIGNED" bezeichnet. Für die vorzeichenunbehafteten Einträge wird das Präfix "UNSIGNED" benutzt.
- Die Größe der Variable in Bit wird an das Präfix angestellt und kann entweder 8, 16 oder 32 sein.

Zugriff
Hier wird die Zugriffsbeschränkung für den Untereintrag eingetragen. Folgende Beschränkungen gibt es:
- "lesen/schreiben": Das Objekt kann sowohl gelesen, als auch geschrieben werden
- "nur lesen": Das Objekt kann nur aus dem Objektverzeichnis gelesen werden. Setzen eines Wertes ist nicht möglich.

PDO-Mapping
Einige Bussysteme, wie CANopen oder EtherCAT unterstützen ein PDO-Mapping. In diesem Tabelleneintrag wird beschrieben, ob der Untereintrag in ein Mapping eingefügt werden darf und in welches. Dabei gibt es folgende Bezeichnungen:
- "no": Das Objekt darf in kein Mapping eingetragen werden.
- "TX-PDO": Das Objekt darf in ein RX Mapping eingetragen werden.
- "RX-PDO": Das Objekt darf in ein TX Mapping eingetragen werden.

Zulässige Werte
In einigen Fällen ist es nur erlaubt, bestimmte Werte in den Untereintrag zu schreiben. Sollte das der Fall sein, werden diese Werte hier aufgelistet. Besteht keine Beschränkung, bleibt das Feld leer.

Vorgabewert
Um die Steuerung beim Einschalten in einen gesicherten Zustand zu bringen ist es nötig, einige Untereinträge mit Werten vor zu belegen. Der Wert, welcher beim Start der Steuerung in den Untereintrag geschrieben wird, wird in diesem Tabelleneintrag notiert.
11.5 Beschreibung

Dieser Abschnitt kann vorhanden sein, wenn die Benutzung zusätzliche Information verlangt. Sollten einzelne Bits eines Objekts oder Untereintrags unterschiedliche Bedeutung haben, so werden Diagramme wie im nachfolgenden Beispiel verwendet.

Beispiel: Das Objekt ist 8 Bit groß, Bit 0 und 1 haben separat eine Funktion. Bit 2 und 3 sind zu einer Funktion zusammengefasst, für Bit 4 bis 7 gilt das gleiche.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

Beispiel [4]

Beispiel [2]
Beschreibung der Bits 3 und 2, diese Bits gehören logisch zusammen. Die 2 in den eckigen Klammern gibt die Anzahl der zusammengehörigen Bits an.
- Wert 00b: Die Beschreibung an dieser Stelle gilt, wenn Bit 2 und Bit 3 auf "0" sind.
- Wert 01b: Die Beschreibung an dieser Stelle gilt, wenn Bit 2 auf "0" und Bit 3 auf "1" ist.
- Wert 10b: Die Beschreibung an dieser Stelle gilt, wenn Bit 2 auf "1" und Bit 3 auf "0" ist.
- Wert 11b: Die Beschreibung an dieser Stelle gilt, wenn Bit 2 und Bit 3 auf "1" sind.

B
Beschreibung des Bits B, auf die Längenangabe wird bei einem einzelnen Bit verzichtet.

A
Beschreibung des Bits A, Bits mit grauen Hintergrund bleiben ungenutzt.

1000h Device Type

Funktion
Beschreibt den Steuerungstyp.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1000h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Device Type</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00060192h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>
Beschreibung

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Type [16]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device profile number [16]</td>
<td></td>
</tr>
</tbody>
</table>

Motor Type[16]

Beschreibt den unterstützten Motor-Typ. Die folgenden Werte sind möglich:

- Bit 23 bis Bit 16: Wert "1": Servoantrieb
- Bit 23 bis Bit 16: Wert "2": Schrittmotor

Device profile number[16]

Beschreibt den unterstützten CANopen-Standard.

Werte:

0192ₜh bzw. 0402ₜd (Vorgabewert): Der CiA 402-Standard wird unterstützt.

1001h Error Register

Funktion

Fehlerregister: Im Fehlerfall wird das entsprechende Fehlerbit gesetzt. Sollte der Fehler nicht mehr bestehen, wird es automatisch wieder gelöscht.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1001ₜh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Error Register</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00ₜh</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN</td>
<td>RES</td>
<td>PROF</td>
<td>COM</td>
<td>TEMP</td>
<td>VOL</td>
<td>CUR</td>
<td>GEN</td>
</tr>
</tbody>
</table>

GEN

Genereller Fehler

CUR

Strom

Version: 1.0.1 / FIR-v1748
VOL
Spannung

TEMP
Temperatur

COM
Kommunikation

PROF
Betrifft das Geräteprofil

RES
Reserviert, immer "0"

MAN
Hersteller spezifisch: Der Motor drehte sich in die falsche Richtung.

1003h Pre-defined Error Field

Funktion
Dieses Objekt beinhaltet einen Fehlerstapel mit bis zu acht Einträgen.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1003h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Pre-defined Error Field</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Änderungshistorie

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Number Of Errors</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Standard Error Field</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Subindex</td>
<td>Name</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>02<sub>h</sub></td>
<td>Standard Error Field</td>
</tr>
<tr>
<td>03<sub>h</sub></td>
<td>Standard Error Field</td>
</tr>
<tr>
<td>04<sub>h</sub></td>
<td>Standard Error Field</td>
</tr>
<tr>
<td>05<sub>h</sub></td>
<td>Standard Error Field</td>
</tr>
<tr>
<td>06<sub>h</sub></td>
<td>Standard Error Field</td>
</tr>
</tbody>
</table>
Technisches Handbuch NP5-20 (EtherCAT)

11 Objektverzeichnis Beschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>07h</td>
<td>Standard Error Field</td>
<td>nur lesen</td>
<td>nein</td>
<td>00000000h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>08h</td>
<td>Standard Error Field</td>
<td>nur lesen</td>
<td>nein</td>
<td>00000000h</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

Allgemeine Funktionsweise

Tritt ein neuer Fehler auf, wird dieser in Subindex 1 eingetragen. Die bereits vorhandenen Einträge in den Subindizes 1 bis 7 werden um eine Stelle nach hinten verschoben. Der Fehler auf Subindex 7 wird dabei entfernt.

Die Anzahl der bereits aufgetreten Fehler lässt sich aus dem Objekt mit dem Subindex 0 ablesen. Ist im Fehlerstapel zur Zeit kein Fehler eingetragen, dann ist das Auslesen eines der acht Subindizes 1-8 nicht möglich und wird mit einem Fehler (Abort-Code=08000024h) beantwortet. Wird in den Subindex 0 eine "0" geschrieben, beginnt die Zählung von neuem.

Bitbeschreibung

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Number [8]</td>
<td>Error Class [8]</td>
<td></td>
</tr>
</tbody>
</table>

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|---|

Error Number [8]

Damit lässt sich der Grund des Fehlers genau eingrenzen. Die Bedeutung der Zahl lässt sich aus nachfolgender Tabelle entnehmen.

<table>
<thead>
<tr>
<th>Fehlernummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Watchdog-Reset</td>
</tr>
<tr>
<td>1</td>
<td>Eingangsspannung zu hoch</td>
</tr>
<tr>
<td>2</td>
<td>Ausgangsstrom zu hoch</td>
</tr>
<tr>
<td>3</td>
<td>Eingangsspannung zu niedrig</td>
</tr>
<tr>
<td>4</td>
<td>Fehler am Feldbus</td>
</tr>
<tr>
<td>5</td>
<td>Motor dreht - trotz aktiver Sperre - in die falsche Richtung</td>
</tr>
<tr>
<td>6</td>
<td>Nur CANopen: NMT-Master braucht zu lange, um Nodeguarding-Anforderung zu schicken</td>
</tr>
<tr>
<td>7</td>
<td>Encoderfehler durch elektrische Störung oder defekte Hardware</td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Fehlernummer	Beschreibung
8 | Encoderfehler; Index während des Auto-Setups nicht gefunden
9 | Fehler in der AB-Spur
10 | Positiver Endschalter und Toleranzzone überschritten
11 | Negativer Endschalter und Toleranzzone überschritten
12 | Temperatur des Gerätes oberhalb 80°C
13 | Die Werte des Objekts 6065\textsubscript{h} (Following Error Window) und des Objekts 6066\textsubscript{h} (Following Error Time Out) wurden überschritten, es wurde ein Fault ausgelöst.
14 | Warnung: Nichtflüchtiger Speicher voll, Neustart der Steuerung erforderlich für Aufräumarbeiten.
15 | Motor blockiert
16 | Warnung: Nichtflüchtiger Speicher beschädigt, Neustart der Steuerung erforderlich für Aufräumarbeiten.
17 | Nur CANopen: Slave brauchte zu lange um PDO Nachrichten zu Senden.
18 | Hallsensor fehlerhaft
19 | Nur CANopen: PDO aufgrund eines Längenfehlers nicht verarbeitet
20 | Nur CANopen: PDO Länge überschritten
21 | Warnung: Nichtflüchtiger Speicher voll, Neustart der Steuerung erforderlich für Aufräumarbeiten.
22 | Nennstrom muss gesetzt werden (203B\textsubscript{h}:01\textsubscript{h})
23 | Encoderauflösung, Polpaarzahl und einige andere Werte sind falsch.
24 | Motorstrom ist zu hoch, passen Sie die PI-Parameter an.
25 | Interner Softwarefehler, generisch
26 | Zu hoher Strom am digitalen Ausgang
27 | Nur CANopen: Unerwartete Sync-Länge
30 | Fehler in der Drehzahlüberwachung: Schlupf Fehler zu groß

Error Class[8]
Dieses Byte ist identisch mit dem Objekt 1001\textsubscript{h}

Error Code[16]
Die Bedeutung der beiden Bytes lässt sich aus der nachfolgenden Tabelle entnehmen.

<table>
<thead>
<tr>
<th>Fehler Code</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000\textsubscript{h}</td>
<td>Allgemeiner Fehler</td>
</tr>
<tr>
<td>2300\textsubscript{h}</td>
<td>Strom am Ausgang der Steuerung zu groß</td>
</tr>
<tr>
<td>3100\textsubscript{h}</td>
<td>Über-/ Unterspannung am Eingang der Steuerung</td>
</tr>
<tr>
<td>4200\textsubscript{h}</td>
<td>Temperaturfehler innerhalb der Steuerung</td>
</tr>
<tr>
<td>6010\textsubscript{h}</td>
<td>Software reset (watchdog)</td>
</tr>
<tr>
<td>6100\textsubscript{h}</td>
<td>Interner Softwarefehler, generisch</td>
</tr>
<tr>
<td>6320\textsubscript{h}</td>
<td>Nennstrom muss gesetzt werden (203B\textsubscript{h}:01\textsubscript{h})</td>
</tr>
<tr>
<td>7121\textsubscript{h}</td>
<td>Motor blockiert</td>
</tr>
<tr>
<td>7305\textsubscript{h}</td>
<td>Inkrementaler oder Hallsensor fehlerhaft</td>
</tr>
</tbody>
</table>
Error Code

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>7600h</td>
<td>Warnung: Nichtflüchtiger Speicher voll oder korrupt, Neustart der Steuerung für Aufräumarbeiten</td>
</tr>
<tr>
<td>8000h</td>
<td>Fehler bei der Feldbusüberwachung</td>
</tr>
<tr>
<td>8130h</td>
<td>Nur CANopen: "Life Guard" - Fehler oder "Heartbeat" - Fehler</td>
</tr>
<tr>
<td>8200h</td>
<td>Nur CANopen: Slave brauchte zu lange um PDO Nachrichten zu Senden.</td>
</tr>
<tr>
<td>8210h</td>
<td>Nur CANopen: PDO wurde nicht verarbeitet aufgrund eines Längen-Fehlers</td>
</tr>
<tr>
<td>8220h</td>
<td>Nur CANopen: PDO Länge überschritten</td>
</tr>
<tr>
<td>8240h</td>
<td>Nur CANopen: Unerwartete Sync-Länge</td>
</tr>
<tr>
<td>8400h</td>
<td>Fehler in der Drehzahlüberwachung: Schlupffehler zu groß</td>
</tr>
<tr>
<td>8611h</td>
<td>Fehler in der Positionsüberwachung: Schleppfehler zu groß</td>
</tr>
<tr>
<td>8612h</td>
<td>Fehler in der Positionsüberwachung: Endschalter und Toleranzzone überschritten</td>
</tr>
<tr>
<td>9000h</td>
<td>Nur EtherCAT: Der Motor wurde gestoppt, da von EtherCAT Zustand OP nach SafeOP, oder PreOP geschalten wurde ohne vorher den Motor zu stoppen.</td>
</tr>
</tbody>
</table>

1008h Manufacturer Device Name

Funktion

Enthält den Gerätenamen als Zeichenkette.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>OBEYCAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Manufacturer Device Name</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>VISIBLE_STRING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>NP5-20</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

1009h Manufacturer Hardware Version

Funktion

Dieses Objekt enthält die Hardware-Version als Zeichenkette.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>OBEYCAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Manufacturer Hardware Version</td>
</tr>
</tbody>
</table>
Object Code: VARIABLE
Datentyp: VISIBLE_STRING
Speicherbar: nein
Zugriff: nur lesen
PDO-Mapping: nein
Zulässige Werte
Vorgabewert: 0
Firmware Version: FIR-v1426
Änderungshistorie

100Ah Manufacturer Software Version

Funktion

Dieses Objekt enthält die Software-Version als Zeichenkette.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>100Ah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Manufacturer Software Version</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>VISIBLE_STRING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>FIR-v1748-B538662</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

1010h Store Parameters

Funktion

Mit diesem Objekt lässt sich das Speichern von Objekten starten. Siehe Kapitel Objekte speichern.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1010h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Store Parameters</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>
Änderungshistorie

- **Firmware Version FIR-v1436**: Eintrag "Objektname" geändert von "Store Parameter" auf "Store Parameters".
- **Firmware Version FIR-v1436**: Die Anzahl der Einträge haben sich geändert von 3 auf 4.
- **Firmware Version FIR-v1512**: Die Anzahl der Einträge haben sich geändert von 4 auf 5.
- **Firmware Version FIR-v1540**: Die Anzahl der Einträge haben sich geändert von 5 auf 7.
- **Firmware Version FIR-v1738-B501312**: Die Anzahl der Einträge haben sich geändert von 7 auf 14.

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Highest Sub-index Supported</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>nein</td>
<td></td>
<td>0Dh</td>
</tr>
<tr>
<td>01h</td>
<td>Save All Parameters To Non-volatile Memory</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td></td>
<td>00000001h</td>
</tr>
<tr>
<td>02h</td>
<td>Save Communication Parameters To Non-volatile Memory</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td></td>
<td>00000001h</td>
</tr>
<tr>
<td>03h</td>
<td>Save Application Parameters To Non-volatile Memory</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td></td>
<td>00000001h</td>
</tr>
<tr>
<td>Subindex</td>
<td>04<sub>h</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Save Customer Parameters To Non-volatile Memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000000001<sub>h</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>05<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Save Drive Parameters To Non-volatile Memory</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000000001<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>06<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Save Tuning Parameters To Non-volatile Memory</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000000001<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>07<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Save Miscellaneous Configurations To Non-volatile Memory</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000000001<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>08<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Save Reserved1 Configurations To Non-volatile Memory</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000000000<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>09<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Save Reserved2 Configurations To Non-volatile Memory</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
</tbody>
</table>
Zugriff: lesen/schreiben
PDO-Mapping: nein
Zulässige Werte
Vorgabewert: 00000000h

Subindex: 0Ah
Name: Save CANopen Configurations To Non-volatile Memory
Datentyp: UNSIGNED32
Zugriff: lesen/schreiben
PDO-Mapping: nein
Zulässige Werte
Vorgabewert: 00000001h

Subindex: 0Bh
Name: Save Modbus RTU Configurations To Non-volatile Memory
Datentyp: UNSIGNED32
Zugriff: lesen/schreiben
PDO-Mapping: nein
Zulässige Werte
Vorgabewert: 00000001h

Subindex: 0Ch
Name: Save Ethernet Configurations To Non-volatile Memory
Datentyp: UNSIGNED32
Zugriff: lesen/schreiben
PDO-Mapping: nein
Zulässige Werte
Vorgabewert: 00000001h

Subindex: 0Dh
Name: Save Profibus Configurations To Non-volatile Memory
Datentyp: UNSIGNED32
Zugriff: lesen/schreiben
PDO-Mapping: nein
Zulässige Werte
Vorgabewert: 00000001h

Beschreibung
Jeder Subindex des Objekts steht für eine bestimmte Speicherklass. Durch Auslesen eines Eintrages kann festgestellt werden, ob diese Speicherkategorie abgespeichert (Wert "1") werden kann oder nicht (Wert="0").

Um den Speichervorgang einer Speicherkategorie zu starten, muss der Wert "65766173h" in den jeweiligen Subindex geschrieben werden. Das entspricht dezimal der 1702257011d bzw. dem ASCII
String "save". Sobald der Speichervorgang abgeschlossen wurde, wird der Speicherbefehl wieder durch den Wert "1" überschrieben, da ein Speichern wieder möglich ist. Für eine detaillierte Beschreibung siehe Kapitel Objekte speichern.

1011h Restore Default Parameters

Funktion

Mit diesem Objekt kann das gesamte oder Teile des Objektverzeichnisses auf die Defaultwerte zurückgesetzt werden. Siehe Kapitel Objekte speichern.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>Objektname</th>
<th>Object Code</th>
<th>Datentyp</th>
<th>Speicherbar</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
<th>Firmware Version</th>
<th>Änderungshistorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1011h</td>
<td>Restore Default Parameters</td>
<td>ARRAY</td>
<td>UNSIGNED32</td>
<td>nein</td>
<td>nur lesen</td>
<td>nein</td>
<td></td>
<td></td>
<td>FIR-v1426</td>
<td>Firmware Version FIR-v1436: Eintrag "Object Name" geändert von "Restore Default Parameter" auf "Restore Default Parameters".</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FIR-v1512</td>
<td>Firmware Version FIR-v1512: Eintrag "Name" geändert von "Restore The Comm Default Parameters" auf "Restore Communication Default Parameters".</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FIR-v1512</td>
<td>Firmware Version FIR-v1512: Eintrag "Name" geändert von "Restore The Application Default Parameters" auf "Restore Application Default Parameters".</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Highest Sub-index Supported</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>nein</td>
<td></td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
<table>
<thead>
<tr>
<th>Subindex</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>01\text{h}</td>
<td>0D_{\text{h}}</td>
</tr>
<tr>
<td>Name</td>
<td>Restore All Default Parameters</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>00000001_{\text{h}}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>02\text{h}</td>
<td>00000001_{\text{h}}</td>
</tr>
<tr>
<td>Name</td>
<td>Restore Communication Default Parameters</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>00000001_{\text{h}}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>03\text{h}</td>
<td>00000001_{\text{h}}</td>
</tr>
<tr>
<td>Name</td>
<td>Restore Application Default Parameters</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>00000001_{\text{h}}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>04\text{h}</td>
<td>00000001_{\text{h}}</td>
</tr>
<tr>
<td>Name</td>
<td>Restore Customer Default Parameters</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>00000001_{\text{h}}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>05\text{h}</td>
<td>00000001_{\text{h}}</td>
</tr>
<tr>
<td>Name</td>
<td>Restore Drive Default Parameters</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>00000001_{\text{h}}</td>
</tr>
</tbody>
</table>

<p>| Subindex | 06\text{h} |</p>
<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>07<sub>h</sub></td>
<td>Restore Tuning Default Parameters</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000<sub>h</sub></td>
<td></td>
</tr>
<tr>
<td>08<sub>h</sub></td>
<td>Restore Miscellaneous Configurations</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000<sub>h</sub></td>
<td></td>
</tr>
<tr>
<td>09<sub>h</sub></td>
<td>Restore Reserved1 Configurations To Non-volatile Memory</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000<sub>h</sub></td>
<td></td>
</tr>
<tr>
<td>0A<sub>h</sub></td>
<td>Restore Reserved2 Configurations To Non-volatile Memory</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000<sub>h</sub></td>
<td></td>
</tr>
<tr>
<td>0B<sub>h</sub></td>
<td>Restore CANopen Configurations To Non-volatile Memory</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000001<sub>h</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restore Modbus RTU Configurations To Non-volatile Memory</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PDO-Mapping: nein
Zulässige Werte: 00000001h
Vorgabewert: 00000001h

Subindex: 0Ch
Name: Restore Ethernet Configurations To Non-volatile Memory
Datentyp: UNSIGNED32
Zugriff: lesen/schreiben
PDO-Mapping: nein
Zulässige Werte: 00000001h
Vorgabewert: 00000001h

Subindex: 0Dh
Name: Restore Profibus Configurations To Non-volatile Memory
Datentyp: UNSIGNED32
Zugriff: lesen/schreiben
PDO-Mapping: nein
Zulässige Werte: 00000001h
Vorgabewert: 00000001h

Beschreibung

Wird der Wert 64616F6C (bzw. 1684107116 oder ASCII load) in dieses Objekt geschrieben, werden Teile oder das gesamte Objektverzeichnis auf die Defaultwerte zurückgesetzt. Der verwendete Subindex entscheidet darüber, welcher Bereich zurück gesetzt wird.

Für eine detaillierte Beschreibung siehe Kapitel Speicherung verwerfen.

1018h Identity Object

Funktion

Dieses Objekt liefert generelle Informationen zu dem Gerät wie Hersteller, Produktcode, Revision und Seriennummer.

💡 Tipp

Halten Sie diese Werte bei Serviceanfragen bereit.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1018h</th>
<th>Objektnname</th>
<th>Identity Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Code</td>
<td>RECORD</td>
<td>Datentyp</td>
<td>IDENTITY</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>00ₜ</td>
<td>Highest Sub-index Supported</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>nein</td>
<td></td>
<td>0₄ₜ</td>
</tr>
<tr>
<td>01ₜ</td>
<td>Vendor-ID</td>
<td>UNSIGNED32</td>
<td>nur lesen</td>
<td>nein</td>
<td>0000026Cₜ</td>
<td></td>
</tr>
<tr>
<td>02ₜ</td>
<td>Product Code</td>
<td>UNSIGNED32</td>
<td>nur lesen</td>
<td>nein</td>
<td>00000025ₜ</td>
<td></td>
</tr>
<tr>
<td>03ₜ</td>
<td>Revision Number</td>
<td>UNSIGNED32</td>
<td>nur lesen</td>
<td>nein</td>
<td>06D40000ₜ</td>
<td></td>
</tr>
<tr>
<td>04ₜ</td>
<td>Serial Number</td>
<td>UNSIGNED32</td>
<td>nur lesen</td>
<td>nein</td>
<td>00000000ₜ</td>
<td></td>
</tr>
</tbody>
</table>
1020h Verify Configuration

Funktion

Dieses Objekt zeigt den Tag und die Zeit der abgespeicherten Konfiguration an.

Ein Konfigurationstool oder ein Master kann dieses Objekt nutzen, um die Konfiguration nach einem Reset zu verifizieren und gegebenenfalls eine Neukonfiguration durchzuführen.

Das Tool muss das Datum und die Uhrzeit setzen, bevor der Speichermechanismus gestartet wird (siehe Kapitel **Objekte speichern**).

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1020h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Verify Configuration</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Prüfung</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1540</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Configuration Date</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Configuration Time</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
</tbody>
</table>
PDO-Mapping: nein
Zulässige Werte: 00000000h

Beschreibung

Subindex 01h (Konfigurationsdatum) soll die Anzahl der Tage seit dem 1. Januar 1984 enthalten. Subindex 02h (Konfigurationszeit) soll die Nummer der Millisekunden seit Mitternacht enthalten.

1600h Receive PDO 1 Mapping Parameter

Funktion

Dieses Objekt enthält die Mapping-Parameter für PDOs, welche die Steuerung empfangen kann (RX-PDO 1).

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1600h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Receive PDO 1 Mapping Parameter</td>
</tr>
<tr>
<td>Object Code</td>
<td>RECORD</td>
</tr>
<tr>
<td>Datentyp</td>
<td>PDO_MAPPING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Kommunikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1426: Eintrag "Überschrift" geändert von "1600h Drive Control" auf "1600h Receive PDO 1 Mapping Parameter". Firmware Version FIR-v1426: Eintrag "Object Name" geändert von "Drive Control" auf "Receive PDO 1 Mapping Parameter".</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>04h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>1st Object To Be Mapped</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Subindex</td>
<td>02<sub>h</sub></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>Name</td>
<td>2nd Object To Be Mapped</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>607A0020<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>03<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>3rd Object To Be Mapped</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>32020020<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>04<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>4th Object To Be Mapped</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>60600008<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>05<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>5th Object To Be Mapped</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>06<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>6th Object To Be Mapped</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000<sub>h</sub></td>
</tr>
</tbody>
</table>

| Subindex | 07_h |
Beschreibung

Jeder Subindex (1-8) beschreibt jeweils ein gemapptes Objekt.

Ein Mapping-Eintrag besteht aus vier Bytes, die sich nach folgender Grafik zusammensetzen.

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Index [16]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td></td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SubIndex [8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Length [8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Index [16]
Darin ist der Index des zu mappenden Objektes enthalten.

Subindex [8]
Darin ist der Subindex des zu mappenden Objektes enthalten.

Length [8]
Darin ist die Länge des zu mappenden Objektes in der Einheit Bit enthalten.

1601h Receive PDO 2 Mapping Parameter

Funktion

Dieses Objekt enthält die Mapping-Parameter für PDOs, welche die Steuerung empfangen kann (RX-PDO 2).

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1601h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Receive PDO 2 Mapping Parameter</td>
</tr>
<tr>
<td>Object Code</td>
<td>RECORD</td>
</tr>
<tr>
<td>Datentyp</td>
<td>PDO_MAPPING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Kommunikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>
Änderungshistorie
Firmware Version FIR-v1426: Eintrag "Überschrift" geändert von "1601h Positioning Control" auf "1601h Receive PDO 2 Mapping Parameter".
Firmware Version FIR-v1426: Eintrag "Object Name" geändert von "Positioning Control" auf "Receive PDO 2 Mapping Parameter".

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Highest Sub-index Supported</td>
<td>UNSIGNED8</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>02h</td>
<td></td>
</tr>
<tr>
<td>01h</td>
<td>1st Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>607A0020h</td>
<td></td>
</tr>
<tr>
<td>02h</td>
<td>2nd Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>60810020h</td>
<td></td>
</tr>
<tr>
<td>03h</td>
<td>3rd Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000h</td>
<td></td>
</tr>
<tr>
<td>04h</td>
<td>4th Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Zugriff lesen/schreiben
PDO-Mapping nein
Zulässige Werte 00000000h
Vorgabewert 00000000h

Subindex 05h
Name 5th Object To Be Mapped
Datentyp UNSIGNED32
Zugriff lesen/schreiben
PDO-Mapping nein
Zulässige Werte 00000000h
Vorgabewert 00000000h

Subindex 06h
Name 6th Object To Be Mapped
Datentyp UNSIGNED32
Zugriff lesen/schreiben
PDO-Mapping nein
Zulässige Werte 00000000h
Vorgabewert 00000000h

Subindex 07h
Name 7th Object To Be Mapped
Datentyp UNSIGNED32
Zugriff lesen/schreiben
PDO-Mapping nein
Zulässige Werte 00000000h
Vorgabewert 00000000h

Subindex 08h
Name 8th Object To Be Mapped
Datentyp UNSIGNED32
Zugriff lesen/schreiben
PDO-Mapping nein
Zulässige Werte 00000000h
Vorgabewert 00000000h

Beschreibung
Jeder Subindex (1-8) beschreibt jeweils ein gemapptes Objekt.
Ein Mapping-Eintrag besteht aus vier Bytes, die sich nach folgender Grafik zusammensetzen.
Index [16]
Darin ist der Index des zu mappenden Objektes enthalten.

Subindex [8]
Darin ist der Subindex des zu mappenden Objektes enthalten.

Length [8]
Darin ist die Länge des zu mappenden Objektes in der Einheit Bit enthalten.

1602h Receive PDO 3 Mapping Parameter

Funktion
Dieses Objekt enthält die Mapping-Parameter für PDOs, welche die Steuerung empfangen kann (RX-PDO 3).

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1602h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Receive PDO 3 Mapping Parameter</td>
</tr>
<tr>
<td>Object Code</td>
<td>RECORD</td>
</tr>
<tr>
<td>Datentyp</td>
<td>PDO_MAPPING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Kommunikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Änderungshistorie
Firmware Version FIR-v1426: Eintrag "Überschrift" geändert von "1602h Velocity Control" auf "1602h Receive PDO 3 Mapping Parameter".

Firmware Version FIR-v1426: Eintrag "Object Name" geändert von "Velocity Control" auf "Receive PDO 3 Mapping Parameter".

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>01h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>1st Object To Be Mapped</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Subindex</td>
<td>Name</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>02<sub>h</sub></td>
<td>2nd Object To BeMapped</td>
</tr>
<tr>
<td>03<sub>h</sub></td>
<td>3rd Object To BeMapped</td>
</tr>
<tr>
<td>04<sub>h</sub></td>
<td>4th Object To BeMapped</td>
</tr>
<tr>
<td>05<sub>h</sub></td>
<td>5th Object To BeMapped</td>
</tr>
<tr>
<td>06<sub>h</sub></td>
<td>6th Object To BeMapped</td>
</tr>
</tbody>
</table>
11 Objektverzeichnis Beschreibung

1603h Receive PDO 4 Mapping Parameter

Funktion

Dieses Objekt enthält die Mapping-Parameter für PDOs, welche die Steuerung empfangen kann (RX-PDO 4).

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1603h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Receive PDO 4 Mapping Parameter</td>
</tr>
<tr>
<td>Object Code</td>
<td>RECORD</td>
</tr>
<tr>
<td>Datentyp</td>
<td>PDO_MAPPING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Kommunikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Änderungshistorie

Firmware Version FIR-v1426: Eintrag “Überschrift” geändert von “1603h Output Control” auf “1603h Receive PDO 4 Mapping Parameter”.

Firmware Version FIR-v1426: Eintrag “Object Name” geändert von “Output Control” auf “Receive PDO 4 Mapping Parameter”.

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>Subindex</td>
<td>Name</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>01_h</td>
<td>1st Object To Be Mapped</td>
</tr>
<tr>
<td>02_h</td>
<td>2nd Object To Be Mapped</td>
</tr>
<tr>
<td>03_h</td>
<td>3rd Object To Be Mapped</td>
</tr>
<tr>
<td>04_h</td>
<td>4th Object To Be Mapped</td>
</tr>
<tr>
<td>05_h</td>
<td>5th Object To Be Mapped</td>
</tr>
</tbody>
</table>
1A00h Transmit PDO 1 Mapping Parameter

Funktion

Dieses Objekt enthält die Mapping-Parameter für PDOs, welche die Steuerung senden kann (TX-PDO 1).

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1A00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Transmit PDO 1 Mapping Parameter</td>
</tr>
<tr>
<td>Object Code</td>
<td>RECORD</td>
</tr>
<tr>
<td>Datentyp</td>
<td>PDO_MAPPING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Kommunikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1426: Eintrag "Überschrift" geändert von "1A00h Drive Status" auf "1A00h Transmit PDO 1 Mapping Parameter". Firmware Version FIR-v1426: Eintrag "Object Name" geändert von "Drive Status" auf "Transmit PDO 1 Mapping Parameter".</td>
</tr>
</tbody>
</table>
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Highest Sub-index Supported</td>
<td>UNSIGNED8</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td></td>
<td>03h</td>
</tr>
<tr>
<td>01h</td>
<td>1st Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>60410010h</td>
<td></td>
</tr>
<tr>
<td>02h</td>
<td>2nd Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>60640020h</td>
<td></td>
</tr>
<tr>
<td>03h</td>
<td>3rd Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>60610008h</td>
<td></td>
</tr>
<tr>
<td>04h</td>
<td>4th Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000h</td>
<td></td>
</tr>
<tr>
<td>05h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>5th Object To Be Mapped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subindex: 06h
<table>
<thead>
<tr>
<th>Name</th>
<th>6th Object To Be Mapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

Subindex: 07h
<table>
<thead>
<tr>
<th>Name</th>
<th>7th Object To Be Mapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

Subindex: 08h
<table>
<thead>
<tr>
<th>Name</th>
<th>8th Object To Be Mapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

Beschreibung

Jeder Subindex (1-8) beschreibt jeweils ein gemapptes Objekt.

Ein Mapping-Eintrag besteht aus vier Bytes, die sich nach folgender Grafik zusammensetzen.

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Index [16]

Darin ist der Index des zu mappenden Objektes enthalten.

Subindex [8]

Darin ist der Subindex des zu mappenden Objektes enthalten.
Technisches Handbuch NP5-20 (EtherCAT)
11 Objektverzeichnis Beschreibung

Length [8]
Darin ist die Länge des zu mappenden Objektes in der Einheit Bit enthalten.

1A01h Transmit PDO 2 Mapping Parameter

Funktion
Dieses Objekt enthält die Mapping-Parameter für PDOs, welche die Steuerung senden kann (TX-PDO 2).

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1A01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Transmit PDO 2 Mapping Parameter</td>
</tr>
<tr>
<td>Object Code</td>
<td>RECORD</td>
</tr>
<tr>
<td>Datentyp</td>
<td>PDO_MAPPING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Kommunikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Änderungshistorie
Firmware Version FIR-v1426: Eintrag "Überschrift" geändert von "1A01h Positioning Status" auf "1A01h Transmit PDO 2 Mapping Parameter".
Firmware Version FIR-v1426: Eintrag "Object Name" geändert von "Positioning Status" auf "Transmit PDO 2 Mapping Parameter".

Wertebeschreibung

Subindex | 00h
Name | Highest Sub-index Supported
Datentyp | UNSIGNED8
Zugriff | lesen/schreiben
PDO-Mapping | nein
Zulässige Werte |
Vorgabewert | 01h

Subindex | 01h
Name | 1st Object To Be Mapped
Datentyp | UNSIGNED32
Zugriff | lesen/schreiben
PDO-Mapping | nein
Zulässige Werte |
Vorgabewert | 60640020h

Subindex | 02h
Name | 2nd Object To Be Mapped
Datentyp | UNSIGNED32
Zugriff | lesen/schreiben
<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>03<sub>h</sub></td>
<td>3rd Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000<sub>h</sub></td>
<td></td>
</tr>
<tr>
<td>04<sub>h</sub></td>
<td>4th Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000<sub>h</sub></td>
<td></td>
</tr>
<tr>
<td>05<sub>h</sub></td>
<td>5th Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000<sub>h</sub></td>
<td></td>
</tr>
<tr>
<td>06<sub>h</sub></td>
<td>6th Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000<sub>h</sub></td>
<td></td>
</tr>
<tr>
<td>07<sub>h</sub></td>
<td>7th Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000<sub>h</sub></td>
<td></td>
</tr>
</tbody>
</table>
Subindex: 08h
Name: 8th Object To Be Mapped
Datentyp: UNSIGNED32
Zugriff: lesen/schreiben
PDO-Mapping: nein
Zulässige Werte: Vorgabewert 00000000h

Beschreibung

Jeder Subindex (1-8) beschreibt jeweils ein gemapptes Objekt. Ein Mapping-Eintrag besteht aus vier Bytes, die sich nach folgender Grafik zusammensetzen.

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index [16]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SubIndex [8]</td>
<td>Length [8]</td>
<td></td>
</tr>
</tbody>
</table>

Index [16]
Darin ist der Index des zu mappenden Objektes enthalten.

Subindex [8]
Darin ist der Subindex des zu mappenden Objektes enthalten.

Length [8]
Darin ist die Länge des zu mappenden Objektes in der Einheit Bit enthalten.

1A02h Transmit PDO 3 Mapping Parameter

Funktion

Dieses Objekt enthält die Mapping-Parameter für PDOs, welche die Steuerung senden kann (TX-PDO 3).

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1A02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Transmit PDO 3 Mapping Parameter</td>
</tr>
<tr>
<td>Object Code</td>
<td>RECORD</td>
</tr>
<tr>
<td>Datentyp</td>
<td>PDO_MAPPING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Kommunikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>
| Änderungshistorie | Firmware Version FIR-v1426: Eintrag “Überschrift” geändert von “1A02h Velocity Status” auf “1A02h Transmit PDO 3 Mapping Parameter”.
Firmware Version FIR-v1426: Eintrag “Object Name” geändert von “Velocity Status” auf “Transmit PDO 3 Mapping Parameter”.

Version: 1.0.1 / FIR-v1748
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Highest Sub-index Supported</td>
<td>UNSIGNED8</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td></td>
<td>01h</td>
</tr>
<tr>
<td>01h</td>
<td>1st Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>60440010h</td>
<td></td>
</tr>
<tr>
<td>02h</td>
<td>2nd Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000h</td>
<td></td>
</tr>
<tr>
<td>03h</td>
<td>3rd Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000h</td>
<td></td>
</tr>
<tr>
<td>04h</td>
<td>4th Object To Be Mapped</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td>00000000h</td>
<td></td>
</tr>
<tr>
<td>05h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
<table>
<thead>
<tr>
<th>Name</th>
<th>5th Object To Be Mapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Subindex</td>
<td>06h</td>
</tr>
<tr>
<td>Name</td>
<td>6th Object To Be Mapped</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Subindex</td>
<td>07h</td>
</tr>
<tr>
<td>Name</td>
<td>7th Object To Be Mapped</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Subindex</td>
<td>08h</td>
</tr>
<tr>
<td>Name</td>
<td>8th Object To Be Mapped</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

Beschreibung

Jeder Subindex (1-8) beschreibt jeweils ein gemapptes Objekt.

Ein Mapping-Eintrag besteht aus vier Bytes, die sich nach folgender Grafik zusammensetzen.

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Index [16]

Darin ist der Index des zu mappenden Objektes enthalten.

Subindex [8]

Darin ist der Subindex des zu mappenden Objektes enthalten.
Length [8]
Darin ist die Länge des zu mappen Objektes in der Einheit Bit enthalten.

1A03h Transmit PDO 4 Mapping Parameter

Funktion
Dieses Objekt enthält die Mapping-Parameter für PDOs, welche die Steuerung senden kann (TX-PDO 4).

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1A03h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Transmit PDO 4 Mapping Parameter</td>
</tr>
<tr>
<td>Object Code</td>
<td>RECORD</td>
</tr>
<tr>
<td>Datentyp</td>
<td>PDO_MAPPING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Kommunikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1426: Eintrag “Überschrift” geändert von “1A03h Input Status” auf “1A03h Transmit PDO 4 Mapping Parameter”. Firmware Version FIR-v1426: Eintrag “Object Name” geändert von “Input Status” auf “Transmit PDO 4 Mapping Parameter”.</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>03h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>1st Object To Be Mapped</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>60FD0020h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>2nd Object To Be Mapped</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>Subindex</td>
<td>Name</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>03<sub>h</sub></td>
<td>3rd Object To Be Mapped</td>
</tr>
<tr>
<td>04<sub>h</sub></td>
<td>4th Object To Be Mapped</td>
</tr>
<tr>
<td>05<sub>h</sub></td>
<td>5th Object To Be Mapped</td>
</tr>
<tr>
<td>06<sub>h</sub></td>
<td>6th Object To Be Mapped</td>
</tr>
<tr>
<td>07<sub>h</sub></td>
<td>7th Object To Be Mapped</td>
</tr>
</tbody>
</table>
Subindex 08h
Name 8th Object To Be Mapped
Datentyp UNSIGNED32
Zugriff lesen/schreiben
PDO-Mapping nein
Zulässige Werte 00000000h

Beschreibung

Jeder Subindex (1-8) beschreibt jeweils ein gemapptes Objekt.
Ein Mapping-Eintrag besteht aus vier Bytes, die sich nach folgender Grafik zusammensetzen.

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Index [16]
Darin ist der Index des zu mappenden Objektes enthalten.

Subindex [8]
Darin ist der Subindex des zu mappenden Objektes enthalten.

Length [8]
Darin ist die Länge des zu mappenden Objektes in der Einheit Bit enthalten.

1C00h Sync Manager Communication Type

Funktion
Diese Objekt zeigt die Zuordnung der vier EtherCAT SyncManager an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1C00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Sync Manager Communication Type</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Die Anzahl der Einträge haben sich geändert von 2 auf 5</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
</tbody>
</table>
Zugriff: nur lesen
PDO-Mapping: nein
Zulässige Werte
Vorgabewert: 04_{16}

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>01$_{16}$</td>
<td>Sync Manager Communication Type</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>02$_{16}$</td>
<td>Sync Manager Communication Type</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>03$_{16}$</td>
<td>Sync Manager Communication Type</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>04$_{16}$</td>
<td>Sync Manager Communication Type</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>nein</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

Die Zuordnung der SyncManager ist vom Hersteller festgelegt und kann nicht geändert werden.
1C12h Sync Manager PDO Assignment

Funktion

Dieses Objekt listet die aktivierten Rx-PDO-Mappings auf (siehe 1600h) und wird vom EtherCAT Master beschrieben.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1C12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Sync Manager PDO Assignment</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Kommunikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Nach der Änderung von Version FIR-v1650-B472161:

- Eintrag "Name" geändert von "PDO-Mapping Index" auf "PDO Mapping Index".
- Die Anzahl der Einträge haben sich geändert von 2 auf 5

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>01h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>PDO Mapping Index</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>PDO Mapping</td>
<td>PDO Mapping</td>
</tr>
<tr>
<td>PDO Mapping</td>
<td>PDO Mapping</td>
</tr>
<tr>
<td>PDO Mapping</td>
<td>PDO Mapping</td>
</tr>
</tbody>
</table>

1C13h Sync Manager PDO Assignment

Funktion

Dieses Objekt listet die aktivierte Tx-PDO-Mappings auf (siehe 1A00h) und wird vom EtherCAT Master beschrieben.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>Sync Manager PDO Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>PDO Assignment</td>
</tr>
<tr>
<td>Dateityp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Kommunikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Die Anzahl der Einträge haben sich geändert von 2 auf 5</td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Firmware Version FIR-v1650-B472161: Eintrag "Name" geändert von "PDO-Mapping Index" auf "PDO Mapping Index".

Firmware Version FIR-v1650-B472161: Eintrag "Name" geändert von "PDO-Mapping Index" auf "PDO Mapping Index".

Firmware Version FIR-v1650-B472161: Eintrag "Name" geändert von "PDO-Mapping Index" auf "PDO Mapping Index".

Firmware Version FIR-v1650-B472161: Eintrag "Name" geändert von "PDO-Mapping Index" auf "PDO Mapping Index".

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>01h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>PDO Mapping Index</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>1A00h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>PDO Mapping Index</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>03h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>PDO Mapping Index</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
</tbody>
</table>
1C32h Output Sync Manager Synchronization

Funktion
Hier befinden sich die Synchronisierungsparameter für das Tx-PDO-Mapping für EtherCAT (siehe 1C12h). Diese werden vom EtherCAT Master eingestellt.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1C32h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Output Sync Manager Synchronization</td>
</tr>
<tr>
<td>Object Code</td>
<td>RECORD</td>
</tr>
<tr>
<td>Datentyp</td>
<td>SYNCMGR_SYNCHRONIZATION</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>
| Änderungshistorie | Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Kommunikation".
Firmware Version FIR-v1650-B472161: Eintrag "Speicherbar" geändert von "ja, Kategorie: Kommunikation" auf "nein".
Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 01 geändert von "lesen/schreiben" auf "nur lesen".
Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 02 geändert von "lesen/schreiben" auf "nur lesen".
Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 03 geändert von "lesen/schreiben" auf "nur lesen". |

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>03h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Synchronization Type</td>
</tr>
</tbody>
</table>
Technisches Handbuch NP5-20 (EtherCAT)

11 Objektverzeichnis Beschreibung

Datentyp UNSIGNED16
Zugriff nur lesen
PDO-Mapping nein
Zulässige Werte
Vorgabewert 0000h

Subindex 02h
Name Cycle Time
Datentyp UNSIGNED32
Zugriff nur lesen
PDO-Mapping nein
Zulässige Werte
Vorgabewert 00000000h

Subindex 03h
Name Shift Time
Datentyp UNSIGNED32
Zugriff nur lesen
PDO-Mapping nein
Zulässige Werte
Vorgabewert 00000000h

1C33h Input Sync Manager Synchronization

Funktion
Hier befinden sich die Synchronisierungsparameter für das Rx-PDO-Mapping für EtherCAT (siehe 1C13h). Diese werden vom EtherCAT Master eingestellt.

Objektbeschreibung

Index 1C33h
Objektname Input Sync Manager Synchronization
Object Code RECORD
Datentyp SYNCMGR_SYNCHRONIZATION
Speicherbar nein
Firmware Version FIR-v1426
Änderungshistorie
Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Kommunikation".
Firmware Version FIR-v1650-B472161: Eintrag "Speicherbar" geändert von "ja, Kategorie: Kommunikation" auf "nein".
Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 01 geändert von "lesen/schreiben" auf "nur lesen".
Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 02 geändert von "lesen/schreiben" auf "nur lesen".

Version: 1.0.1 / FIR-v1748
Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 03 geändert von "lesen/schreiben" auf "nur lesen".

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00<sub>h</sub></th>
<th>Name</th>
<th>Highest Sub-index Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>03<sub>h</sub></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01<sub>h</sub></th>
<th>Name</th>
<th>Synchronization Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000<sub>h</sub></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02<sub>h</sub></th>
<th>Name</th>
<th>Cycle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000<sub>h</sub></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>03<sub>h</sub></th>
<th>Name</th>
<th>Shift Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000<sub>h</sub></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1F50h Program Data

Funktion

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1F50h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Program Data</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>DOMAIN</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1540</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>03h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Program Data Bootloader/firmware</td>
</tr>
<tr>
<td>Datentyp</td>
<td>DOMAIN</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Program Data NanoJ</td>
</tr>
<tr>
<td>Datentyp</td>
<td>DOMAIN</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>03h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Program Data DataFlash</td>
</tr>
<tr>
<td>Datentyp</td>
<td>DOMAIN</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
</tbody>
</table>
PDO-Mapping nein
Zulässige Werte
Vorgabewert 0

1F51h Program Control

Funktion

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1F51h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Program Control</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1540</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>03h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Program Control Bootloader/firmware</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Program Control NanoJ</td>
</tr>
</tbody>
</table>
Datentyp: UNSIGNED8
Zugriff: lesen/schreiben
PDO-Mapping: nein
Zulässige Werte
Vorgabewert: 00h

Subindex: 03h
Name: Program Control DataFlash
Datentyp: UNSIGNED8
Zugriff: lesen/schreiben
PDO-Mapping: nein
Zulässige Werte
Vorgabewert: 00h

1F57h Program Status

Funktion

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>1F57h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Program Status</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1540</td>
</tr>
</tbody>
</table>

Änderungshistorie

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
</tbody>
</table>
2030h Pole Pair Count

Funktion

Enthält die Polpaarzahl des angeschlossenen Motors.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2030h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Pole Pair Count</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Tuning</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000032h</td>
</tr>
</tbody>
</table>

Firmware Version: FIR-v1426
Änderungshistorie: Firmware Version FIR-v1540: Eintrag “Saveable” geändert von “nein” auf “ja, Kategorie: Tuning”.
2031h Maximum Current

Funktion

Ist die I^2t-Überwachung nicht aktiv, wird hier der im Motordatenblatt angegebene Effektivstrom in mA eingetragen. Wird die Closed Loop Betriebsart verwendet oder ist die I^2t-Überwachung aktiviert, wird hier der Maximalstromwert in mA angegeben.

Steuerungsintern wird der eingegebene Wert immer als Effektivwert interpretiert.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2031\textsubscript{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Maximum Current</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Tuning</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000258\textsubscript{h}</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von "ja, Kategorie: Applikation" auf "ja, Kategorie: Tuning". Firmware Version FIR-v1614: Eintrag "Object Name" geändert von "Peak Current" auf "Max Current".</td>
</tr>
</tbody>
</table>

2034h Upper Voltage Warning Level

Funktion

Dieses Objekt enthält den Schwellwert für den Fehler "Überspannung" in Millivolt.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2034\textsubscript{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Upper Voltage Warning Level</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000D2F0\textsubscript{h}</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Beschreibung

Steigt die Eingangsspannung der Steuerung über diesen Schwellwert, wird der Motor abgeschaltet und ein Fehler ausgelöst. Dieser Fehler setzt sich automatisch zurück, wenn die Eingangsspannung kleiner als (Spannung des Objekts 2034h minus 2 Volt) ist.

2035h Lower Voltage Warning Level

Funktion

Dieses Objekt enthält den Schwellwert für den Fehler "Unterspannung" in Millivolt.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2035h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Lower Voltage Warning Level</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00002710h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

Fällt die Eingangsspannung der Steuerung unter diesen Schwellwert, wird der Motor abgeschaltet und ein Fehler ausgelöst. Der Fehler setzt sich automatisch zurück, wenn die Eingangsspannung größer als die Spannung des Objekts 2035h plus 2 Volt ist.

2036h Open Loop Current Reduction Idle Time

Funktion

Dieses Objekt beschreibt die Zeit in Millisekunden, die sich der Motor im Stillstand befinden muss, bis die Stromabsenkung aktiviert wird.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2036h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Open Loop Current Reduction Idle Time</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000003E8h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>
2037h Open Loop Current Reduction Value/factor

Funktion
Dieses Objekt beschreibt den Effektivstrom, auf den der Motorstrom reduziert werden soll, wenn die Stromabsenkung im Open Loop aktiviert wird (Bit 3 in 3202h = "1") und sich der Motor im Stillstand befindet.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2037h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Open Loop Current Reduction Value/factor</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>FFFFFFFCEh</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Beschreibung

Wert von 2037h größer/gleich 0 und kleiner als Wert 2031h
Strom wird auf den hier eingetragenen Wert reduziert. Der Wert wird in mA und als Effektivwert interpretiert.

Wert von 2037h, im Bereich von -1 bis -100
Der eingetragene Wert wird als eine Prozentzahl interpretiert und bestimmt die Reduktion des Nennstroms in 2037h. Für die Berechnung wird der Wert in 2031h herangezogen.

Beispiel: Das Objekt 2031h hat den Wert 4200 mA. Der Wert -60 in 2037h senkt den Strom um 60% von 2031h ab, somit ergibt sich eine Stromabsenkung auf einen Effektivwert von 2031h * (2037h + 100) / 100 = 1680 mA.

Die Angabe -100 in 2037h würde z.B. bedeuten, dass eine Stromabsenkung auf einen Effektivwert von 0 mA eingestellt wird.

Hinweis
Falls ein Nennstrom größer 0 in 203Bh:01 eingetragen ist, wird der kleinere Wert von 2031h und 203Bh:01 als Nennstrom zur Berechnung der Stromreduzierung herangezogen.
2038h Brake Controller Timing

Funktion

Dieses Objekt enthält die Zeiten für die *Bremsensteuerung* in Millisekunden sowie die PWM-Frequenz und den Tastgrad.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2038h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Brake Controller Timing</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>06h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Close Brake Idle Time</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000003E8h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Shutdown Power Idle Time</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000003E8h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>03h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Open Brake Delay Time</td>
</tr>
</tbody>
</table>
Datentyp
UNSIGNED32

Zugriff
lesen/schreiben

PDO-Mapping
nein

Zulässige Werte

Vorgabewert
000003E8

Subindex
04h

Name
Start Operation Delay Time

Datentyp
UNSIGNED32

Zugriff
lesen/schreiben

PDO-Mapping
nein

Zulässige Werte
zwischen 0 und 2000 (7D0h)

Vorgabewert
00000000

Subindex
05h

Name
PWM Frequency

Datentyp
UNSIGNED32

Zugriff
lesen/schreiben

PDO-Mapping
nein

Zulässige Werte
zwischen 2 und 100 (64h)

Vorgabewert
00000000

Subindex
06h

Name
PWM Duty Cycle

Datentyp
UNSIGNED32

Zugriff
lesen/schreiben

PDO-Mapping
nein

Zulässige Werte
0, zwischen 2 und 100 (64h)

Vorgabewert
00000000

Beschreibung

Die Subindizes haben folgende Funktionen:

- 01h: Zeit zwischen dem Motorstillstand und dem Schließen der Bremse.
- 02h: Zeit zwischen dem Schließen der Bremse und dem Abschalten des Motorstroms.
- 03h: Zeit zwischen dem Einschalten des Motorstroms und dem Öffnen der Bremse.
- 05h: Frequenz der Bremsen-PWM in Hertz.
- 06h: Tastgrad der Bremsen-PWM in Prozent.

2039h Motor Currents

Funktion

Dieses Objekt enthält die gemessenen Motorströme in mA.
Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2039h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Motor Currents</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIRM-v1426</td>
</tr>
</tbody>
</table>

Änderungshistorie:

- Firmware Version FIRM-v1504: Tabellen-Eintrag "PDO-Mapping" bei Subindex 01 geändert von "nein" auf "TX-PDO".
- Firmware Version FIRM-v1504: Tabellen-Eintrag "PDO-Mapping" bei Subindex 02 geändert von "nein" auf "TX-PDO".
- Firmware Version FIRM-v1504: Tabellen-Eintrag "PDO-Mapping" bei Subindex 03 geändert von "nein" auf "TX-PDO".
- Firmware Version FIRM-v1504: Tabellen-Eintrag "PDO-Mapping" bei Subindex 04 geändert von "nein" auf "TX-PDO".

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>04h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>I_d</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>I_q</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>03h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>I_a</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000_h</td>
</tr>
</tbody>
</table>

Subindex 04_h
<table>
<thead>
<tr>
<th>Name</th>
<th>I_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000_h</td>
</tr>
</tbody>
</table>

Beschreibung

Hinweis
Die Motorströme I_d (Subindex 01_h) und I_q (Subindex 02_h) werden nur angezeigt, wenn der Closed Loop aktiviert wurde, sonst wird der Wert 0 ausgegeben.

203Ah Homing On Block Configuration

Funktion
Dieses Objekt enthält die Parameter für das Homing auf Block (siehe Kapitel Homing)

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>203A_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Homing On Block Configuration</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td></td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td></td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>
Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".
Firmware Version FIR-v1614: Eintrag "Data type" geändert von "UNSIGNED32" auf "INTEGER32".
Firmware Version FIR-v1614: Eintrag "Data type" geändert von "UNSIGNED32" auf "INTEGER32".

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Minimum Current For Block Detection</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>FFFFFFFBA<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Block Detection Time</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000000C8<sub>h</sub></td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes haben folgende Funktion:

- 01_h: Gibt den Stromgrenzwert an, ab dem ein Blockieren detektiert werden soll. Positive Zahlenwerte geben die Stromgrenze in mA an, negative Zahlen einen Prozentwert von Objekt 2031_h, Beispiel: der Wert "1000" entspricht 1000 mA (=1 A), der Wert "-70" entspricht 70% von 2031_h.
- 02_h: Gibt die Zeit in ms an, die der Motor nach der Blockdetektion trotzdem noch gegen den Block fahren soll.
203Bh I²t Parameters

Funktion

Dieses Objekt hält die Parameter für die I²t-Überwachung.

Die I²t-Überwachung wird aktiviert, in dem in 203Bh:01 und 203Bh:02 ein Wert größer 0 eingetragen wird (siehe I²t Motor-Überlastungsschutz).

I²t kann nur für den Closed Loop-Betrieb verwendet werden, mit einer Ausnahme: Wenn I²t im Open Loop-Betrieb aktiviert ist, wird der Strom auf den kleineren der beiden Werte von 203Bh und 2031h begrenzt.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>203Bh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>I²t Parameters</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Tuning</td>
</tr>
<tr>
<td>Firmwre Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>07h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Nominal Current</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Maximum Duration Of Peak Current</td>
</tr>
<tr>
<td>Subindex</td>
<td>Name</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td>04h</td>
<td>CalcValue</td>
</tr>
<tr>
<td>05h</td>
<td>LimitedCurrent</td>
</tr>
<tr>
<td>06h</td>
<td>Status</td>
</tr>
<tr>
<td>07h</td>
<td>ActualResistance</td>
</tr>
</tbody>
</table>
Zulässige Werte

<table>
<thead>
<tr>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000h</td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes sind in zwei Gruppen geteilt: Subindex 01ₜ und 02ₜ enthalten Parameter zur Steuerung, Subindex 03ₜ bis 06ₜ sind Statuswerte. Die Funktionen sind wie folgt:

- **01ₜ**: Hier wird der im Motordatenblatt angegebene Nennstrom in mA eingetragen. Dieser muss kleiner als der eingegebene Strom in Objekt 2031ₜ sein, sonst wird die Überwachung nicht aktiviert. Der angegebene Wert wird als Effektivwert interpretiert.
- **02ₜ**: Gibt die maximale Dauer des Spitzenstroms in ms an.
- **03ₜ**: Threshold, gibt die Grenze in mA an, von der abhängt, ob auf Maximalstrom oder Nennstrom geschalten wird.
- **04ₜ**: CalcValue, gibt den berechneten Wert an, welcher mit Threshold verglichen wird, um den Strom einzustellen.
- **05ₜ**: LimitedCurrent, zeigt den gegenwärtigen Strom als Effektivwert an, der von \(I^2t \) eingestellt wurde.
- **06ₜ**: aktueller Status. Ist der Subentry-Wert "0", ist \(I^2t \) deaktiviert, ist der Wert "1", wird \(I^2t \) aktiviert.

203Dh Torque Window

Funktion

Gibt relativ zum Zieldrehmoment einen symmetrischen Bereich an, innerhalb dessen das Ziel als erreicht gilt.

Wird der Wert auf "FFFFFFFF"ₜ gesetzt, wird die Überwachung abgeschaltet, das Bit "Target reached" im Objekt 6041ₜ (Statusword) wird nie gesetzt.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>203Dh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Torque Window</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1540</td>
</tr>
</tbody>
</table>

Änderungshistorie

Firmware Version FIR-v1748: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".

203Eh Torque Window Time Out

Funktion

Das Istdrehmoment muss sich für diese Zeit (in Millisekunden) innerhalb des “Torque Window” (203Dₜ) befinden, damit das Zieldrehmoment als erreicht gilt.
Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>203Eh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Torque Window Time Out</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1540</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1614: Eintrag “Speicherbar” geändert von ”nein” auf ”ja, Kategorie: Applikation”. Firmware Version FIR-v1738-B501312: Eintrag ”Object Name” geändert von ”Torque Window Time” auf ”Torque Window Time Out”</td>
</tr>
</tbody>
</table>

203Fh Max Slippage Time Out

Funktion

Zeit in Millisekunden, bis ein zu großer Schlupflehn im Modus Profile Velocity zu einer Fehlermeldung führt.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>203Fh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Max Slippage Time Out</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0064h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B501312</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

Weicht die Istgeschwindigkeit von der Sollgeschwindigkeit so stark ab, dass der Wert (Absolutbetrag) dieses Objekts überschritten wird, wird das Bit 13 im Objekt 6041h gesetzt. Die Abweichung muss länger andauern als die Zeit im Objekt 203Fh.

Im Objekt 3700h kann eine Reaktion auf den Schlupflehn gesetzt werden. Wenn eine Reaktion definiert ist, wird auch ein Fehler im Objekt 1003h eingetragen.

Version: 1.0.1 / FIR-v1748
2056h Limit Switch Tolerance Band

Funktion

Gibt an, wie weit positive oder negative Endschalter überfahren werden dürfen, bis die Steuerung einen Fehler auslöst.

Dieses Toleranzband ist beispielsweise erforderlich, um Referenzfahrten - bei denen Endschalter betätigt werden können - fehlerfrei abschließen zu können.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2056ₜₜh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Limit Switch Tolerance Band</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000001Fₜₜₜₜh</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

2057h Clock Direction Multiplier

Funktion

Mit diesem Wert wird der Takt-Zählwert im Takt-Richtungs-Modus multipliziert, bevor er weiterverarbeitet wird.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2057ₜₜh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Clock Direction Multiplier</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000008₀ₜₜₜₜh</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>
2058h Clock Direction Divider

Funktion

Durch diesen Wert wird der Takt-Zählwert im **Takt-Richtungs-Modus** dividiert, bevor er weiterverarbeitet wird.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2058h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Clock Direction Divider</td>
</tr>
<tr>
<td>Objekt Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

2059h Encoder Configuration

Funktion

Mit diesem Objekt kann die Versorgungsspannung und der Typ des Encoders umgeschaltet werden.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2059h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Encoder Configuration</td>
</tr>
<tr>
<td>Objekt Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Tuning</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1614: Eintrag “Speicherbar” geändert von “ja, Kategorie: Applikation” auf “ja, Kategorie: Tuning”.</td>
</tr>
</tbody>
</table>
Beschreibung

TYPE

Legt den Typ des Encoders fest. Das Bit muss den Wert "0" bei einem differentiellen Encoder haben. Für einen single-ended Encoder muss das Bit auf "1" gesetzt werden.

205Ah Absolute Sensor Boot Value (in User Units)

Funktion

Tipp

Dieses Objekt hat nur bei Verwendung eines Absolut-Encoders eine Funktion. Wird kein Absolut-Encoder verwendet, ist der Wert immer 0.

Aus diesem Objekt kann die initiale Encoderposition beim Einschalten der Steuerung (in benutzerdefinierten Einheiten) ausgelesen werden.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>205A<sub>n</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Absolute Sensor Boot Value (in User Units)</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>00000000<sub>h</sub></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>FIR-v1446</td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
205Bh Clock Direction Or Clockwise/Counter Clockwise Mode

Funktion
Mit diesem Objekt lässt sich der Takt-Richtungs-Modus (Wert = "0") auf den Rechts-/Linkslauf-Modus (Wert = "1") umschalten.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>205Bh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Clock Direction Or Clockwise/Counter Clockwise Mode</td>
</tr>
<tr>
<td>Objekt Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1504</td>
</tr>
</tbody>
</table>

2084h Bootup Delay

Funktion
Definiert den Zeitraum zwischen Anlegen der Versorgungsspannung an die Steuerung und der Funktionsbereitschaft der Steuerung in Millisekunden.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2084h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Bootup Delay</td>
</tr>
<tr>
<td>Objekt Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

2101h Fieldbus Module Availability

Funktion
Zeigt die verfügbaren Feldbusse an.
Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2101h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Fieldbus Module Availability</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000020h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1626: Eintrag "Object Name" geändert von "Fieldbus Module" auf "Fieldbus Module Availability".</td>
</tr>
</tbody>
</table>

Beschreibung

Die Bits 0 bis 15 zeigen die physikalische Schnittstelle an, die Bits 16 bis 31 das benutzte Protokoll (falls notwendig).

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SPI</td>
<td>E-CAT</td>
<td>E-NET</td>
<td>CAN</td>
<td>RS232</td>
<td>RS485</td>
<td>USB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

USB

Wert = "1": Der Feldbus USB ist verfügbar.

RS-485

Wert = "1": Eine RS-485 Schnittstelle ist verfügbar.

RS-232

Wert = "1": Eine RS-232 Schnittstelle ist verfügbar.

CAN

Wert = "1": Der Feldbus CANopen ist verfügbar.

E-NET

Wert = "1": Eine Ethernet Schnittstelle ist verfügbar.

E-CAT

Wert = "1": Eine EtherCAT Schnittstelle ist verfügbar.

SPI

Wert = "1": Eine SPI Schnittstelle ist verfügbar.

MRTU

Wert = "1": Das benutzte Protokoll ist Modbus RTU.

MTCP

Wert = "1": Das benutzte Protokoll ist Modbus TCP
E-IP

Wert = "1": Das benutzte Protokoll ist EtherNet/IP™

2102h Fieldbus Module Control

Funktion

Mit diesem Objekt können bestimmte Feldbusse (physikalischen Schnittstellen und Protokolle) aktiviert/deaktiviert werden.

Objektkonfiguration

<table>
<thead>
<tr>
<th>Index</th>
<th>2102h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Fieldbus Module Control</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Kommunikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000020h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1540</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von "ja, Kategorie: Applikation" auf "ja, Kategorie: Kommunikation".</td>
</tr>
</tbody>
</table>

Beschreibung

Im Objekt 2103h:1h werden alle physikalischen Schnittstellen/Protokolle angezeigt, welche aktiviert/deaktiviert werden können. Diese können in diesem Objekt (2102h) geschaltet werden. Der gegenwärtige Status der aktivierten Feldbusse steht im Objekt 2103h:2h.

Dabei gilt die folgende Verteilung der Bits:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-IP</td>
<td>MTCP</td>
<td>MRTU</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI</td>
<td>E-CAT</td>
<td>E-NET</td>
<td>CAN</td>
<td>RS232</td>
<td>RS485</td>
<td>USB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

USB

USB Schnittstelle

RS-485

RS-485 Schnittstelle

RS-232

RS-232 Schnittstelle

CAN

CANopen Schnittstelle

Version: 1.0.1 / FIR-v1748
E-NET
EtherNET Schnittstelle

E-CAT
EtherCAT Schnittstelle

SPI
SPI Schnittstelle

MRTU
Modbus RTU Protokoll

MTCP
Modbus TCP Protokoll

E-IP
EtherNet/IP™ Protokoll

2103h Fieldbus Module Status

Funktion
Zeigt die aktiven Feldbusse an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2103h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Fieldbus Module Status</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
</tbody>
</table>

Zulässige Werte

Vorgabewert

Firmware Version

FIR-v1540

Änderungshistorie

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
</tbody>
</table>

Zulässige Werte

Vorgabewert

02h

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
</table>
Name: Fieldbus Module Disable Mask
Datentyp: UNSIGNED32
Zugriff: nur lesen
PDO-Mapping: nein
Zulässige Werte
Vorgabewert: 00000000h

Subindex: 02h
Name: Fieldbus Module Enabled
Datentyp: UNSIGNED32
Zugriff: nur lesen
PDO-Mapping: nein
Zulässige Werte
Vorgabewert: 00000020h

Beschreibung

Subindex 1 (Fieldbus Module Disable Mask): Im diesem Subindex werden alle physikalischen Schnittstellen und Protokolle angezeigt, welche aktiviert oder deaktiviert werden können. Ein Wert "1" bedeutet, dass dieser Feldbus deaktivierbar ist.

Subindex 2 (Fieldbus Module Enabled): Dieser Subindex zeigt alle zur Zeit aktivierten physikalischen Schnittstellen und Protokolle an. Der Wert "1" bedeutet, dass der Feldbus aktiv ist.

Für Subindex 1 und 2 gilt folgende Verteilung der Bits:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E-IP</td>
</tr>
<tr>
<td></td>
<td>MTCP</td>
</tr>
<tr>
<td></td>
<td>MRTU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPI</td>
</tr>
<tr>
<td></td>
<td>E-CAT</td>
</tr>
<tr>
<td></td>
<td>E-NET</td>
</tr>
<tr>
<td></td>
<td>CAN</td>
</tr>
<tr>
<td></td>
<td>RS232</td>
</tr>
<tr>
<td></td>
<td>RS485</td>
</tr>
<tr>
<td></td>
<td>USB</td>
</tr>
</tbody>
</table>

USB
USB Schnittstelle

RS-485
RS-485 Schnittstelle

RS-232
RS-232 Schnittstelle

CAN
CANopen Schnittstelle

E-NET
EtherNET Schnittstelle

E-CAT
EtherCAT Schnittstelle

SPI
SPI Schnittstelle
Technisches Handbuch NP5-20 (EtherCAT)

11 Objektverzeichnis Beschreibung

MRTU
Modbus RTU Protokoll

MTCP
Modbus TCP Protokoll

E-IP
EtherNet/IP™ Protokoll

2110h EtherCAT Slave Status

Funktion

Zeigt den Betriebszustand des EtherCAT Slave Moduls an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2110h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>EtherCAT Slave Status</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

ECAT Bus Status [4]
Hier wird der aktuelle EtherCAT-Bus-Status eingetragen

- Wert = 01h: Busstatus INIT
- Wert = 02h: Busstatus PREOPERATIONAL
- Wert = 03h: Busstatus BOOT
- Wert = 04h: Busstatus SAFEOPERATIONAL
- Wert = 08h: Busstatus OPERATIONAL

ERR
Wert = "1": Ein Fehler ist aktiv

DC Mode
Wert = "1": EtherCAT Synchronisation aktiv (DC Modus), Wert "0" bedeutet "keine Synchronisation"
2300h NanoJ Control

Funktion

Steuert die Ausführung eines NanoJ-Programms.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2300h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>NanoJ Control</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1436: Eintrag "Object Name" geändert von "VMM Control" auf "NanoJ Control".</td>
</tr>
</tbody>
</table>

Beschreibung

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Schaltet das NanoJ-Programm ein (Wert = "1") oder aus (Wert = "0").

Bei einer steigenden Flanke in Bit 0 wird das Programm zuvor neu geladen und der Variablenbereich zurückgesetzt.

Hinweis

Das Starten des NanoJ Programms kann bis zu 200ms dauern.

2301h NanoJ Status

Funktion

Zeigt den Betriebszustand des Benutzerprogramms an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2301h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>NanoJ Status</td>
</tr>
</tbody>
</table>
Beschreibung

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

RUN

Wert = "0": Programm ist angehalten, Wert = "1": NanoJ-Programm läuft.

RES

Reserviert.

ERR

Programm wurde mit Fehler beendet. Fehlerursache kann aus dem Objekt \(2302_h\) ausgelesen werden.

2302h NanoJ Error Code

Funktion

Zeigt an, welcher Fehler bei der Ausführung des Benutzerprogramms aufgetreten ist.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2302h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>NanoJ Error Code</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>
Beschreibung

Fehlercodes bei Programmausführung:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000<sub>h</sub></td>
<td>Kein Fehler</td>
</tr>
<tr>
<td>0001<sub>h</sub></td>
<td>Firmware unterstützt verwendete Funktion (noch) nicht</td>
</tr>
<tr>
<td>0002<sub>h</sub></td>
<td>Nicht oder falsch initialisierter Pointer</td>
</tr>
<tr>
<td>0003<sub>h</sub></td>
<td>Unerlaubter Zugriff auf System-Resource</td>
</tr>
<tr>
<td>0004<sub>h</sub></td>
<td>Hardfault (interner Fehler)</td>
</tr>
<tr>
<td>0005<sub>h</sub></td>
<td>Code wird zu lange ohne yield() oder sleep() ausgeführt</td>
</tr>
<tr>
<td>0006<sub>h</sub></td>
<td>Unerlaubter Zugriff auf System-Resource</td>
</tr>
<tr>
<td>0007<sub>h</sub></td>
<td>Zu viele Variablen auf dem Stack</td>
</tr>
<tr>
<td>0100<sub>h</sub></td>
<td>Ungültige NanoJ Programmdatei</td>
</tr>
</tbody>
</table>

Fehler bei dem Zugriff auf ein Objekt:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1xxxxyy<sub>h</sub></td>
<td>Ungültiges Mapping in der NanoJ-Programmdatei: Der Wert in "xxxx" benennt den Index, der Wert in "yy" den Subindex des Objekts, das gemappt werden soll aber nicht gemappt werden kann.</td>
</tr>
<tr>
<td>1000<sub>h</sub></td>
<td>Zugriff auf ein nicht existierendes Objekt im Objektverzeichnis</td>
</tr>
<tr>
<td>1001<sub>h</sub></td>
<td>Schreibzugriff auf schreibgeschützten Eintrag im OD</td>
</tr>
<tr>
<td>1002<sub>h</sub></td>
<td>Interner Dateisystemfehler</td>
</tr>
</tbody>
</table>

Dateisystem Fehlercodes beim Laden des Benutzerprogramms:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10002<sub>h</sub></td>
<td>Interner Dateisystemfehler</td>
</tr>
<tr>
<td>10003<sub>h</sub></td>
<td>Speichermedium nicht bereit</td>
</tr>
<tr>
<td>10004<sub>h</sub></td>
<td>Datei nicht gefunden</td>
</tr>
<tr>
<td>10005<sub>h</sub></td>
<td>Ordner nicht gefunden</td>
</tr>
<tr>
<td>10006<sub>h</sub></td>
<td>Ungültiger Dateiname/Ordnername</td>
</tr>
<tr>
<td>10008<sub>h</sub></td>
<td>Zugriff auf Datei nicht möglich</td>
</tr>
<tr>
<td>10009<sub>h</sub></td>
<td>Datei/Verzeichnis Objekt ist ungültig</td>
</tr>
<tr>
<td>1000A<sub>h</sub></td>
<td>Speichermedium ist schreibgeschützt</td>
</tr>
<tr>
<td>1000B<sub>h</sub></td>
<td>Laufwerksnummer ist ungültig</td>
</tr>
<tr>
<td>1000C<sub>h</sub></td>
<td>Arbeitsbereich des Laufwerks ist ungültig</td>
</tr>
<tr>
<td>1000D<sub>h</sub></td>
<td>Kein gültiges Dateisystem auf dem Laufwerk</td>
</tr>
<tr>
<td>1000E<sub>h</sub></td>
<td>Erstellung des Dateisystems ist fehlgeschlagen</td>
</tr>
<tr>
<td>1000F<sub>h</sub></td>
<td>Zugriff innerhalb der geforderten Zeit nicht möglich</td>
</tr>
<tr>
<td>10010<sub>h</sub></td>
<td>Zugriff wurde zurückgewiesen</td>
</tr>
</tbody>
</table>
230Fh Uptime Seconds

Funktion

Dieses Objekt enthält die Betriebszeit seit dem letzten Start der Steuerung in Sekunden.

Hinweis

Dieses Objekt wird nicht gespeichert, die Zählung beginnt nach dem Einschalten wieder mit "0".

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>230Fh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Uptime Seconds</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1436</td>
</tr>
</tbody>
</table>

2310h NanoJ Input Data Selection

Funktion

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2310h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>NanoJ Input Data Selection</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1650-B472161</td>
</tr>
</tbody>
</table>
Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 00 geändert von "lesen/schreiben" auf "nur lesen".

Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 01 geändert von "lesen/schreiben" auf "nur lesen".

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>10<sub>h</sub></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>10<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01<sub>h</sub> - 10<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Mapping #1 - #16</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000<sub>h</sub></td>
</tr>
</tbody>
</table>

Beschreibung

Jeder Subindex (1-16) beschreibt jeweils ein gemapptes Objekt.

Ein Mapping-Eintrag besteht aus vier Bytes, die sich nach folgender Grafik zusammen setzen.

```
<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

Index [16]

Darin ist der Index des zu mappenden Objektes enthalten

Subindex [8]

Darin ist der Subindex des zu mappenden Objektes enthalten

Length [8]

Darin ist die Länge des zu mappenden Objektes in der Einheit Bit enthalten.

2320h NanoJ Output Data Selection

Funktion

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2320h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>NanoJ Output Data Selection</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1650-B472161</td>
</tr>
</tbody>
</table>
| Änderungshistorie | Firmware Version FIR-v1436: Eintrag "Object Name" geändert von "VMM Output Data Selection" auf "NanoJ Output Data Selection".
Firmware Version FIR-v1650-B472161: Eintrag "Speicherbar" geändert von "ja, Kategorie: Applikation" auf "nein".
Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 00 geändert von "lesen/schreiben" auf "nur lesen".
Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 01 geändert von "lesen/schreiben" auf "nur lesen". |

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>10h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h - 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Mapping #1 - #16</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

Beschreibung

Jeder Subindex (1-16) beschreibt jeweils ein gemapptes Objekt.
Ein Mapping Eintrag besteht aus vier Byte welche sich nach nachfolgender Grafik zusammen setzen.
Technisches Handbuch NP5-20 (EtherCAT)
11 Objektverzeichnis Beschreibung

Index [16]
Darin ist der Index des zu mappenden Objektes enthalten

Subindex [8]
Darin ist der Subindex des zu mappenden Objektes enthalten

Length [8]
Darin ist die Länge des zu mappenden Objektes in der Einheit Bit enthalten.

2330h NanoJ In/output Data Selection

Funktion

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2330h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>NanoJ In/output Data Selection</td>
</tr>
<tr>
<td>Objekt Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1650-B472161</td>
</tr>
</tbody>
</table>

Wertebeschreibung

Subindex	00h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen

Version: 1.0.1 / FIR-v1748
Beschreibung

Jeder Subindex (1-16) beschreibt jeweils ein gemapptes Objekt.

Ein Mapping-Eintrag besteht aus vier Bytes, die sich nach folgender Grafik zusammen setzen.

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Index [16]</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SubIndex [8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Length [8]</td>
</tr>
</tbody>
</table>

Index [16]

Darin ist der Index des zu mappenden Objektes enthalten

Subindex [8]

Darin ist der Subindex des zu mappenden Objektes enthalten

Length [8]

Darin ist die Länge des zu mappenden Objektes in der Einheit Bit enthalten.

2400h NanoJ Inputs

Funktion

Hier befindet sich ein Array mit 32 32-Bit Integerwerten, das innerhalb der Firmware nicht verwendet wird und ausschließlich zur Kommunikation mit dem Benutzerprogramm über den Feldbus dient.

Objektbeschreibung

Index 2400h
Objektname NanoJ Inputs
Object Code ARRAY
Datentyp INTEGER32
Speicherbar nein
Firmware Version FIR-v1426
Änderungshistorie Die Anzahl der Einträge haben sich geändert von 2 auf 33
Firmware Version FIR-v1436: Eintrag "Object Name" geändert von "VMM Inputs" auf "NanoJ Inputs".
Firmware Version FIR-v1436: Eintrag "Name" geändert von "VMM Input N#" auf "NanoJ Input N#".

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>20<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01<sub>h</sub> - 20<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>NanoJ Input #1 - #32</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000<sub>h</sub></td>
</tr>
</tbody>
</table>

Beschreibung

Hier können dem NanoJ-Programm z. B. Vorgabewerte übergeben werden.

2410h NanoJ Init Parameters

Funktion

Dieses Objekt funktioniert identisch dem Objekt 2400_h mit dem Unterschied, dass dieses Objekt gespeichert werden kann.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2410<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>NanoJ Init Parameters</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1450</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1450: Eintrag "Data type" geändert von "INTEGER32" auf "UNSIGNED8".</td>
</tr>
</tbody>
</table>
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>20h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h - 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>NanoJ Init Parameter #1 - #32</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

2500h NanoJ Outputs

Funktion

Hier befindet sich ein Array mit 32 32-Bit Integerwerten, das innerhalb der Firmware nicht verwendet wird und ausschließlich zur Kommunikation mit dem Benutzerprogramm über den Feldbus dient.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2500h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>NanoJ Outputs</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td></td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Vorgabewert

<table>
<thead>
<tr>
<th>Name</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>20(_h)</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

Hier kann das *NanoJ-Programm* Ergebnisse ablegen, die dann über den Feldbus ausgelesen werden können.

2600h NanoJ Debug Output

Funktion

Dieses Objekt enthält Debug-Ausgaben eines Benutzerprogramms.

Objektkbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2600(_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>NanoJ Debug Output</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Änderungshistorie: Firmware Version FIR-v1436: Eintrag "Object Name" geändert von "VMM Debug Output" auf "NanoJ Debug Output".

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00(_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01(_h) - 40(_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Value #1 - #64</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
</tbody>
</table>
Beschreibung

Hier legt das NanoJ-Programm die Debug-Ausgaben ab, welche mit der Funktion `VmmDebugOutputString()`, `VmmDebugOutputInt()` und dergleichen aufgerufen wurden.

2701h Customer Storage Area

Funktion

In dieses Objekt können Daten abgelegt und gespeichert werden.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2701h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Customer Storage Area</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Benutzer</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1540</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1540: Eintrag "Data type" geändert von "UNSIGNED32" auf "UNSIGNED8".</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>FEh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h - FEh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Storage #1 - #254</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
</tbody>
</table>
2800h Bootloader And Reboot Settings

Funktion

Mit diesem Objekt lässt sich ein Reboot der Firmware auslösen und das Kurzschließen der Motorwicklungen im Bootloader-Modus aus- und einschalten.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>2800h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Bootloader And Reboot Settings</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1540</td>
</tr>
</tbody>
</table>

Änderungshistorie

wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>03h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Reboot Command</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Reboot Delay Time In Ms</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
</tbody>
</table>
Beschreibung

Die Subindizes haben folgende Funktion:

- **01**h: Wird hier der Wert "746F6F62"h eingetragen, wird die Firmware rebootet.
- **02**h: Zeit in Millisekunden: verzögert den Reboot der Firmware um die jeweilige Zeit.
- **03**h: mit dem Bit 0 kann das Kurzschließen der Motorwicklungen im Bootloader-Modus aus- und eingeschaltet werden:
 - Bit 0= 1: Das Kurzschließen der Motorwicklungen im Bootloader-Modus wird ausgeschaltet.
 - Bit 0= 0: Das Kurzschließen der Motorwicklungen im Bootloader-Modus wird eingeschaltet.

3202h Motor Drive Submode Select

Funktion

Steuert die Reglerbetriebsart, wie z. B. die Closed Loop/ Open Loop-Umschaltung und ob der Velocity-Mode über den S-Regler simuliert wird oder mit einem echten V-Regler im Closed Loop arbeitet.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3202h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Motor Drive Submode Select</td>
</tr>
<tr>
<td>Objekt Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Bewegung</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>00000000h</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1540: Eintrag "Saveable" geändert von "ja, Kategorie: Applikation" auf "ja, Kategorie: Fahrt".</td>
</tr>
<tr>
<td></td>
<td>Firmware Version FIR-v1540: Eintrag "Saveable" geändert von "ja, Kategorie: Fahrt" auf "ja, Kategorie: Bewegung".</td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Beschreibung

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>CurRed</td>
<td>Brake</td>
<td>VoS</td>
<td>CL/OL</td>
<td></td>
</tr>
</tbody>
</table>

CL/OL
Umschaltung zwischen *Open Loop* und *Closed Loop*
- Wert = "0": *Open Loop*
- Wert = "1": *Closed Loop*

VoS
Wert = "1": V-Regler über eine S-Rampe simulieren: die Geschwindigkeitsmodi über kontinuierliche Positionsänderungen simulieren

Brake
Wert = "1": Einschalten der automatischen Bremsensteuerung.

CurRed (Current Reduction)
Wert = "1": Stromabsenkung im *Open Loop* aktiviert

Torque
nur in den Betriebsmodi **Profile Torque** und **Cyclic Synchronous Torque** aktiv
Wert = "1": M-Regler ist aktiv, andernfalls ist ein V-Regler überlagert: in den Torque-Modi wird kein V-Regler zur Geschwindigkeitsbegrenzung verwendet, das Objekt 6080\(_h\) wird also ignoriert, 3210\(_h\):3 und 3210\(_h\):4 haben keinen Einfluss auf die Regelung.

BLDC
Wert = "1": Motortyp "BLDC" (Bürstenloser Gleichstrommotor)

3203h Feedback Selection

Funktion
In diesem Objekt werden die Quellen der Vorgaben für die Kommutierung, Geschwindigkeits- und Positionsregelung festgelegt.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3203(_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Feedback Selection</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Bewegung</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1748-B538662</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Highest Sub-index Supported</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>RX-PDO</td>
<td>04h</td>
<td></td>
</tr>
<tr>
<td>01h</td>
<td>1st Feedback Interface</td>
<td>UNSIGNED8</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>02h</td>
<td>2nd Feedback Interface</td>
<td>UNSIGNED8</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>03h</td>
<td>3rd Feedback Interface</td>
<td>UNSIGNED8</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>04h</td>
<td>4th Feedback Interface</td>
<td>UNSIGNED8</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>00h</td>
<td></td>
</tr>
</tbody>
</table>
Beschreibung

Die Subindizes haben folgende Funktion:

- 00\textsubscript{h}: Wert="1" bis "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- \(n\)\textsubscript{h}:
 Subindex \(n\) enthält eine Bitmaske für die jeweilige Rückführung \(n\). Die Bits haben dabei folgende Bedeutung:
 - Bit 0: wird das Bit auf "1" gesetzt, wird die Rückführung \(n\) für die Positionsregelung verwendet.
 - Bit 1: wird das Bit auf "1" gesetzt, wird die Rückführung \(n\) für die Geschwindigkeitsregelung verwendet.
 - Bit 2: wird das Bit auf "1" gesetzt, wird die Rückführung \(n\) wird für die Kommutierung im Closed Loop verwendet.

Subindex 01\textsubscript{h} entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Welche Rückführung die Steuerung für die einzelnen Regler (Kommutierung, Geschwindigkeit, Position) berücksichtigt, ist implizit durch die Reihenfolge der Rückführungen vorgegeben.

Das Aufsuchen beginnt immer mit Rückführung 2 und setzt sich aufsteigend fort, bis alle produktspezifisch vorhandenen Rückführungen abgefragt wurden. Wird eine Rückführung gefunden deren Parametrierung gesetzt ist, dann wird diese dem entsprechenden Regler zugeordnet und die Suche abgebrochen.

Hinweis

Wird das Bit 0 in 3202\textsubscript{h} auf 0 gesetzt, ist der Closed Loop deaktiviert und somit hat das Bit 2 (Kommutierung) keine Bedeutung. Das Bit 1 für die Geschwindigkeit und das Bit 0 für die Position in den jeweiligen Subindizes werden weiterhin für die Anzeige der Positions- und Geschwindigkeits-Ist-Werten herangezogen.

3204h Feedback Mapping

Funktion

Das Objekt enthält Informationen zu den vorhandenen Rückführungen.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3204\textsubscript{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Feedback Mapping</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1748-B538662</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Highest Sub-index Supported</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>TX-PDO</td>
<td></td>
<td>04h</td>
</tr>
<tr>
<td>01h</td>
<td>Index Of 1st Feedback Interface</td>
<td>UNSIGNED16</td>
<td>nur lesen</td>
<td>TX-PDO</td>
<td>3380h</td>
<td></td>
</tr>
<tr>
<td>02h</td>
<td>Index Of 2nd Feedback Interface</td>
<td>UNSIGNED16</td>
<td>nur lesen</td>
<td>TX-PDO</td>
<td>3390h</td>
<td></td>
</tr>
<tr>
<td>03h</td>
<td>Index Of 3rd Feedback Interface</td>
<td>UNSIGNED16</td>
<td>nur lesen</td>
<td>TX-PDO</td>
<td>33A0h</td>
<td></td>
</tr>
<tr>
<td>04h</td>
<td>Index Of 4th Feedback Interface</td>
<td>UNSIGNED16</td>
<td>nur lesen</td>
<td>TX-PDO</td>
<td>33A1h</td>
<td></td>
</tr>
</tbody>
</table>
Beschreibung

Die Subindizes haben folgende Funktion:

- \(00_n\): Werte "1" bis "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- \(n_n\):
 - Subindex \(n\) verweist auf den Index des zugehörigen Objekts für die Konfiguration der entsprechenden Rückführung.
 - Subindex \(01_n\) entspricht immer der ersten (und immer vorhandenen) Rückführung \textit{Sensorless}.

3210h Motor Drive Parameter Set

Funktion

Beinhaltet die P- und I-Anteile der Strom-, Geschwindigkeits- und Positionsregler für \textit{Open Loop} (nur Stromregler aktiviert) und \textit{Closed Loop}.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3210h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Motor Drive Parameter Set</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIRM-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Firmware Version FIRM-v1626: Eintrag "Name" geändert von "S_P" auf "Position Loop, Proportional Gain (closed Loop)".

Firmware Version FIRM-v1626: Eintrag "Name" geändert von "S_I" auf "Position Loop, Integral Gain (closed Loop)".

Firmware Version FIRM-v1626: Eintrag "Name" geändert von "V_P" auf "Velocity Loop, Proportional Gain (closed Loop)".

Firmware Version FIRM-v1626: Eintrag "Name" geändert von "V_I" auf "Velocity Loop, Integral Gain (closed Loop)".

Firmware Version FIRM-v1626: Eintrag "Name" geändert von "I_P" auf "Torque Current Loop, Proportional Gain (closed Loop)".

Firmware Version FIRM-v1626: Eintrag "Name" geändert von "I_I" auf "Torque Current Loop, Integral Gain (closed Loop)".

Firmware Version FIRM-v1626: Eintrag "Name" geändert von "Iq_P" auf "Torque Current Loop, Proportional Gain (closed Loop)".

Firmware Version FIRM-v1626: Eintrag "Name" geändert von "Iq_I" auf "Torque Current Loop, Integral Gain (closed Loop)".

Firmware Version FIRM-v1626: Eintrag "Name" geändert von "Id_P" auf "Flux Current Loop, Proportional Gain (closed Loop)".

Firmware Version FIRM-v1626: Eintrag "Name" geändert von "Id_I" auf "Flux Current Loop, Integral Gain (closed Loop)".

Firmware Version FIRM-v1626: Eintrag "Name" geändert von "I_P" auf "Torque Current Loop, Proportional Gain (dspDrive - Stepper Motor, Open Loop)".

Firmware Version FIRM-v1626: Eintrag "Name" geändert von "I_I" auf "Torque Current Loop, Integral Gain (dspDrive - Stepper Motor, Open Loop)".

Version: 1.0.1 / FIRM-v1748
Firmware Version FIR-v1650-B472161: Eintrag "Name" geändert von "Torque Current Loop, Proportional Gain (dspDrive - Stepper Motor, Open Loop)" auf "Torque Current Loop, Proportional Gain (open Loop)".

Firmware Version FIR-v1650-B472161: Eintrag "Name" geändert von "Torque Current Loop, Integral Gain (dspDrive - Stepper Motor, Open Loop)" auf "Torque Current Loop, Integral Gain (open Loop)".

Firmware Version FIR-v1650-B472161: Eintrag "Datentyp" geändert von "INTEGER32" auf "UNSIGNED32".

Firmware Version FIR-v1650-B472161: Eintrag "Data type" geändert von "INTEGER32" auf "UNSIGNED32".

Firmware Version FIR-v1738-B501312: Tabellen-Eintrag "PDO-Mapping" bei Subindex 00 bis 0A geändert von "nein" auf "RX-PDO".

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0C'h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Position Loop, Proportional Gain (closed Loop)</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000800'h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Position Loop, Integral Gain (closed Loop)</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000'h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>03h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Velocity Loop, Proportional Gain (closed Loop)</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Subindex</td>
<td>Name</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>04<sub>h</sub></td>
<td>Velocity Loop, Integral Gain (closed Loop)</td>
</tr>
<tr>
<td>05<sub>h</sub></td>
<td>Flux Current Loop, Proportional Gain (closed Loop)</td>
</tr>
<tr>
<td>06<sub>h</sub></td>
<td>Flux Current Loop, Integral Gain (closed Loop)</td>
</tr>
<tr>
<td>07<sub>h</sub></td>
<td>Torque Current Loop, Proportional Gain (closed Loop)</td>
</tr>
<tr>
<td>08<sub>h</sub></td>
<td>Torque Current Loop, Integral Gain (closed Loop)</td>
</tr>
<tr>
<td>Subindex</td>
<td>09<sub>h</sub></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Name</td>
<td>Torque Current Loop, Proportional Gain (open Loop)</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00003A980<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>0A<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Torque Current Loop, Integral Gain (open Loop)</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000AFC8<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>0B<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Velocity Feed Forward Factor In Per Mille</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000003E8<sub>h</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>0C<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Acceleration Feed Forward Factor</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000<sub>h</sub></td>
</tr>
</tbody>
</table>

Beschreibung

- Subindex 00_h: Anzahl der Einträge
- Subindex 01_h: Proportionalanteil des S-Reglers (Position)
- Subindex 02_h: Integralanteil des S-Reglers (Position)
- Subindex 03_h: Proportionalanteil des V-Reglers (Geschwindigkeit)
- Subindex 04_h: Integralanteil des V-Reglers (Geschwindigkeit)
- Subindex 05_h: (Closed Loop) Proportionalanteil des Stromreglers der feldbildenden Komponente
- Subindex 06_h: (Closed Loop) Integralanteil des Stromreglers der feldbildenden Komponente
- Subindex 07_h: (Closed Loop) Proportionalanteil des Stromreglers der momentbildenden Komponente
• Subindex 08h: (Closed Loop) Integralanteil des Stromreglers der momentbildenden Komponente
• Subindex 09h: (Open Loop) Proportionalteil des Stromreglers der feldbildenden Komponente
• Subindex 0Ah: (Open Loop) Integralanteil des Stromreglers der feldbildenden Komponente
• Subindex 0Bh: (Closed Loop) Geschwindigkeitsvorsteuerung in Promille. Default ist 1000 und damit ein Faktor von 1.
• Subindex 0Ch: (Closed Loop) Beschleunigungsvorsteuerung. Default ist 0 (Vorsteuerung inaktiv). Ist auch beim Verzögern wirksam.

3212h Motor Drive Flags

Funktion

Mit diesem Objekt wird bestimmt, ob das Auto-Setup die Regler-Parameter anpassen soll, oder nicht. Zudem kann die Richtung des Drehfeldes geändert werden.

Hinweis

Änderungen im Subindex 02h werden erst nach einem Neustart der Steueung aktiv. Das Auto-Setup muss danach erneut durchgeführt werden.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3212h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Motor Drive Flags</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER8</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1450</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>03h</td>
</tr>
</tbody>
</table>
Subindex 01h

<table>
<thead>
<tr>
<th>Name</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>INTEGER8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00h</td>
</tr>
</tbody>
</table>

Subindex 02h

<table>
<thead>
<tr>
<th>Name</th>
<th>Override Field Inversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>INTEGER8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00h</td>
</tr>
</tbody>
</table>

Subindex 03h

<table>
<thead>
<tr>
<th>Name</th>
<th>Do Not Touch Controller Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>INTEGER8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00h</td>
</tr>
</tbody>
</table>

Beschreibung

Für den Subindex 02h gültige Werte:
- Wert = "0": Default-Werte der Firmware benutzen
- Wert = "1": nicht Invertieren des Drehfeldes erzwingen (mathematisch positiv)
- Wert = "-1": Invertieren des Drehfeldes erzwingen (mathematisch negativ)

Für den Subindex 03h gültige Werte:
- Wert = "0": **Auto-Setup** erkennt den Motortyp (Schrittmotor oder BLDC-Motor) und verwendet den entsprechenden vorkonfigurierten Parametersatz.
- Wert = "1": **Auto-Setup** mit den Werten für den Regler durchführen, die vor dem Auto-Setup im Objekt 3210h eingetragen wurden, die Werte in 3210h werden nicht geändert.

3220h Analog Inputs

Funktion

Zeigt die Momentanwerte der Analogeingänge in Digits an.
Durch Objekt 3221h kann der jeweilige Analogeingang als Strom- oder Spannungseingang konfiguriert werden.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3220h</th>
</tr>
</thead>
</table>
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00\textsubscript{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02\textsubscript{h}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01\textsubscript{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Analogue Input 1</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000\textsubscript{h}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02\textsubscript{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Analogue Input 2</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000\textsubscript{h}</td>
</tr>
</tbody>
</table>

Beschreibung

Formeln zum Umrechnen von [digits] in die jeweilige Einheit:

- Spannungseingang: \(x \text{ digits} \times 3.3 \text{ V} / 1024 \text{ digits} \)
- Stromeingang: \(x \text{ digits} \times 20 \text{ mA} / 1024 \text{ digits} \)

3221h Analogue Inputs Control

Funktion

Mit diesem Objekt lässt sich ein Analog-Eingang von Spannungs- auf Strommessung umschalten.
Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3221h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Analogue Inputs Control</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Beschreibung

Generell gilt: Wird ein Bit auf den Wert "0" gesetzt, misst der Analogeingang die Spannung, ist das Bit auf den Wert "1" gesetzt, wird der Strom gemessen.

AC1
Einstellung für Analogeingang 1

AC2
Einstellung für Analogeingang 2

3231h Flex IO Configuration

Funktion

Definiert wie die Pins (Ein- / Ausgänge 1 … 4) des Geräts belegt werden.

- Subindex 01h Output Mask: Diese Bitspele legt fest, ob der Pin als Eingang oder Ausgang verwendet wird:
 - Bit = "0": Pin ist Eingang (Standard)
 - Bit = "1": Pin ist Ausgang
- Subindex 02h Pullup Mask: Diese Bitspele legt fest, ob der Pin ein Pullup oder Pulldown ist:
 - Bit = "0": Pin ist Pulldown (Standard)
 - Bit = "1": Pin ist Pullup

Tipp

Subindex 02h ist für den Pin nur aktiv, wenn er über Subindex 01h als Eingang definiert ist.
Beispiel für Subindex 01\textsubscript{h}: Pin 2 und Pin 3 sollen Ausgänge sein, Wert = "6" (=0110 \textsubscript{b})

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3231\textsubscript{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Flex IO Configuration</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1650-B472161</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00\textsubscript{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02\textsubscript{h}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01\textsubscript{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Output Mask</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000\textsubscript{h}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02\textsubscript{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Pullup Mask</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000\textsubscript{h}</td>
</tr>
</tbody>
</table>
3240h Digital Inputs Control

Funktion

Mit diesem Objekt lassen sich digitale Eingänge manipulieren wie in Kapitel *Digitale Ein- und Ausgänge* beschrieben.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3240h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Digital Inputs Control</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>
| Änderungshistorie | Firmware Version FIR-v1426: Subindex 01h: Eintrag "Name" geändert von "Special Function Disable" auf "Special Function Enable"

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>08h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Special Function Enable</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Function Inverted</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Subindex</td>
<td>Name</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>03_h</td>
<td>Force Enable</td>
</tr>
<tr>
<td>04_h</td>
<td>Force Value</td>
</tr>
<tr>
<td>05_h</td>
<td>Raw Value</td>
</tr>
<tr>
<td>06_h</td>
<td>Input Range Select</td>
</tr>
<tr>
<td>07_h</td>
<td>Differential Select</td>
</tr>
<tr>
<td>08_h</td>
<td>Routing Enable</td>
</tr>
</tbody>
</table>
Beschreibung

Die Subindizes haben folgende Funktion:

- **3240h:01h (Special Function Enable):** Dieses Bit erlaubt Sonderfunktionen eines Eingangs aus-
 (Wert "0") oder einzuschalten (Wert "1"). Soll Eingang 1 z.B. nicht als negativer Endschalter
 verwendet werden, so muss die Sonderfunktion abgeschaltet werden, damit nicht fälschlicherweise
 auf den Signalgeber reagiert wird. Auf die Bits 16 bis 31 hat das Objekt keine Auswirkungen.
 Die Firmware wertet folgende Bits aus:
 - Bit 0: Negativer Endschalter
 - Bit 1: Positiver Endschalter
 - Bit 2: Referenzschalter
 Sollen z.B. zwei Endschalter und ein Referenzschalter verwendet werden, müssen Bits 0-2 in
 3240h:01h auf "1" gesetzt werden.

- **3240h:02h (Function Inverted):** Dieser Subindex wechselt von Schließer-Logik (eine logische High-
 Pegel am Eingang ergibt den Wert "1" im Objekt **60FDh**) auf Öffner-Logik (eine logische High-Pegel
 am Eingang ergibt den Wert "0"").
 Das gilt für die Sonderfunktionen (außer den Takt- und Richtungseingängen) und für die normalen
 Eingänge. Hat das Bit den Wert "0" gilt Schließer-Logik, entsprechend bei dem Wert "1" die Öffner-
 Logik. Bit 0 wechselt die Logik des Eingangs 1, Bit 1 die Logik des Eingangs 2 usw.

- **3240h:03h (Force Enable):** Dieser Subindex schaltet die Softwaresimulation von Eingangswerten
 ein, wenn das entsprechende Bit auf "1" gesetzt ist.
 Dann werden nicht mehr die tatsächlichen, sondern die in Objekt **3240h:04h** eingestellten Werte für
 den jeweiligen Eingang verwendet. Bit 0 entspricht dabei dem Eingang 1, Bit 1 dem Eingang 2 usw.

- **3240h:04h (Force Value):** Dieses Bit gibt den Wert vor, der als Eingangswert eingelesen werden
 soll, wenn das gleiche Bit im Objekt **3240h:03h** gesetzt wurde.

- **3240h:05h (Raw Value):** Dieses Objekt beinhaltet den unmodifizierten Eingabewert.

3242h Digital Input Routing

Funktion

Dieses Objekt bestimmt die Quelle des Inputroutings, die im **60FDh** endet.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3242h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamn</td>
<td>Digital Input Routing</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1504</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>24h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h - 24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Input Source #1 - #36</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00h</td>
</tr>
</tbody>
</table>

Beschreibung

Der Subindex 01h enthält die Quelle für das Bit 0 des Objekts 60FD. Der Subindex 02h enthält die Quelle für das Bit 1 des Objekts 60FD und so weiter.

Die Nummer, die in eine Subindex geschrieben wird, bestimmt die Quelle für das zugehörige Bit. Die folgende Tabelle listet alle möglichen Signalquellen auf.

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Signalquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Signal ist immer 0</td>
</tr>
<tr>
<td>01</td>
<td>Physikalischer Eingang 1</td>
</tr>
<tr>
<td>02</td>
<td>Physikalischer Eingang 2</td>
</tr>
<tr>
<td>03</td>
<td>Physikalischer Eingang 3</td>
</tr>
<tr>
<td>04</td>
<td>Physikalischer Eingang 4</td>
</tr>
<tr>
<td>05</td>
<td>Physikalischer Eingang 5</td>
</tr>
<tr>
<td>06</td>
<td>Physikalischer Eingang 6</td>
</tr>
<tr>
<td>07</td>
<td>Physikalischer Eingang 7</td>
</tr>
<tr>
<td>08</td>
<td>Physikalischer Eingang 8</td>
</tr>
<tr>
<td>09</td>
<td>Physikalischer Eingang 9</td>
</tr>
<tr>
<td>10</td>
<td>Physikalischer Eingang 10</td>
</tr>
<tr>
<td>11</td>
<td>Physikalischer Eingang 11</td>
</tr>
<tr>
<td>12</td>
<td>Physikalischer Eingang 12</td>
</tr>
<tr>
<td>13</td>
<td>Physikalischer Eingang 13</td>
</tr>
<tr>
<td>14</td>
<td>Physikalischer Eingang 14</td>
</tr>
<tr>
<td>15</td>
<td>Physikalischer Eingang 15</td>
</tr>
<tr>
<td>16</td>
<td>Physikalischer Eingang 16</td>
</tr>
<tr>
<td>65</td>
<td>Hall Eingang "U"</td>
</tr>
<tr>
<td>66</td>
<td>Hall Eingang "V"</td>
</tr>
</tbody>
</table>
3243h Digital Input Homing Capture

Funktion

Mit diesem Objekt kann automatisch die Encoderposition notiert werden, wenn am digitalen Eingang, der für den Referenzschalter verwendet wird, ein Pegelwechsel stattfindet.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3243h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Digital Input Homing Capture</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Vorgabewert
Firmware Version FIR-v1738-B501312
Änderungshistorie

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Highest Sub-index Supported</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>nein</td>
<td></td>
<td>04h</td>
</tr>
<tr>
<td>01h</td>
<td>Control</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>00000000h</td>
<td></td>
</tr>
<tr>
<td>02h</td>
<td>Capture Count</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>00000000h</td>
<td></td>
</tr>
<tr>
<td>03h</td>
<td>Value</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>00000000h</td>
<td></td>
</tr>
<tr>
<td>04h</td>
<td>Sensor Raw Value</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zulässige Werte
Vorgabewert 00000000h

Beschreibung

- **Subindex 01h**: damit wird der Typ des Pegelwechsels ausgewählt:
 - Funktion deaktivieren: Wert "0"
 - Mit steigender Flanke: Wert "1"
 - Mit fallender Flanke: Wert "2"
 - Beide Flanken: Wert "3"
- **Subindex 02h**: gibt die Anzahl der notierten Pegelwechsel seit dem letzten Start der Funktion wieder; wird auf 0 zurückgesetzt, wenn Subindex 01h auf 1, 2 oder 3 gesetzt wird
- **Subindex 03h**: Encoder Position des Pegelwechsels (in absoluten Benutzeinheiten aus 6064h)
- **Subindex 04h**: Encoder Position des Pegelwechsels

3250h Digital Outputs Control

Funktion

Mit diesem Objekt lassen sich die digitalen Ausgänge steuern, wie in Kapitel "Digitale Ein- und Ausgänge" beschrieben.

Dabei gilt für alle Subindizes:

- Bit 0 bis 15 steuern die Spezialfunktionen.
- Bit 16 bis 31 steuern die Pegel der Ausgänge.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3250h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektdname</td>
<td>Digital Outputs Control</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>
| Änderungshistorie | Firmware Version FIR-v1426: Subindex 01h: Eintrag "Name" geändert von "Special Function Disable" auf "Special Function Enable"
 Firmware Version FIR-v1446: Eintrag "Name" geändert von "Special Function Enable" auf "No Function".

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Subindex</td>
<td>Name</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>01₉</td>
<td>No Function</td>
</tr>
<tr>
<td>02₉</td>
<td>Function Inverted</td>
</tr>
<tr>
<td>03₉</td>
<td>Force Enable</td>
</tr>
<tr>
<td>04₉</td>
<td>Force Value</td>
</tr>
<tr>
<td>05₉</td>
<td>Raw Value</td>
</tr>
<tr>
<td>Subindex</td>
<td>Name</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>06h</td>
<td>Reserved1</td>
</tr>
<tr>
<td>07h</td>
<td>Reserved2</td>
</tr>
<tr>
<td>08h</td>
<td>Routing Enable</td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes haben folgende Funktion:

- **01h**: Ohne Funktion.
- **02h**: Mit diesem Subindex wird die Logik invertiert (von Öffner-Logik auf Schließer-Logik).
- **03h**: Mit diesem Subindex wird der Ausgangswert erzwungen, wenn das Bit den Wert "1" hat. Der Pegel des Ausganges wird in Subindex 4h festgelegt.
- **04h**: Mit diesem Subindex wird der am Ausgang anzulegende Pegel definiert. Der Wert "0" liefert am digitalen Ausgang einen logischen Low-Pegel, der Wert "1" entsprechend einen logischen High-Pegel.
- **05h**: In diesem dem Subindex wird die an die Ausgänge gelegte Bitkombination abgelegt.

3252h Digital Output Routing

Funktion

Dieses Objekt weist einem Ausgang eine Signalquelle zu, die mit dem 60FEh kontrolliert werden kann.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>Objekname</th>
<th>Object Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3252h</td>
<td>Digital Output Routing</td>
<td>ARRAY</td>
</tr>
</tbody>
</table>
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Highest Sub-index Supported</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>nein</td>
<td>05h</td>
<td>05h</td>
</tr>
<tr>
<td>01h</td>
<td>Output Control #1</td>
<td>UNSIGNED16</td>
<td>lesen/schreiben</td>
<td>TX-PDO</td>
<td>1080h</td>
<td>1080h</td>
</tr>
<tr>
<td>02h</td>
<td>Output Control #2</td>
<td>UNSIGNED16</td>
<td>lesen/schreiben</td>
<td>TX-PDO</td>
<td>0090h</td>
<td>0090h</td>
</tr>
<tr>
<td>03h</td>
<td>Output Control #3</td>
<td>UNSIGNED16</td>
<td>lesen/schreiben</td>
<td>TX-PDO</td>
<td>0091h</td>
<td>0091h</td>
</tr>
</tbody>
</table>
Subindex 04h
Name | Output Control #4
Datentyp | UNSIGNED16
Zugriff | lesen/schreiben
PDO-Mapping | TX-PDO
Zulässige Werte |
Vorgabewert | 0092h

Subindex 05h
Name | Output Control #5
Datentyp | UNSIGNED16
Zugriff | lesen/schreiben
PDO-Mapping | TX-PDO
Zulässige Werte |
Vorgabewert | 0093h

3320h Read Analogue Input

Funktion
Zeigt die Momentanwerte der Analogeingänge in benutzerdefinierten Einheiten an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3320h</th>
<th>Objektnname</th>
<th>Read Analogue Input</th>
<th>Object Code</th>
<th>ARRAY</th>
<th>Datentyp</th>
<th>INTEGER32</th>
<th>Speicherbar</th>
<th>nein</th>
<th>Firmware Version</th>
<th>FIR-v1426</th>
<th>Änderungshistorie</th>
</tr>
</thead>
</table>

Wertebeschreibung

| Subindex | 00h | Name | Number Of Analogue Inputs | **Datentyp** | UNSIGNED8 | **Zugriff** | nur lesen | **PDO-Mapping** | nein | **Zulässige Werte** |
|----------|-------|--------------------|---------------------------|-------------|-----------|-----------|-----------|------------------|------|------------------|-----------|

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
<th>Name</th>
<th>Analogue Input 1</th>
<th>Datentyp</th>
<th>INTEGER32</th>
</tr>
</thead>
</table>
Zugriff | nur lesen
PDO-Mapping | TX-PDO
Zulässige Werte |
Vorgabewert | 00000000_{h}

| Subindex | 02_{h}
| Name | Analogue Input 2
| Datentyp | INTEGER32
| Zugriff | nur lesen
| PDO-Mapping | TX-PDO
| Zulässige Werte |
| Vorgabewert | 00000000_{h}

Beschreibung

Die benutzerdefinierten Einheiten setzten sich aus Offset (3321_{h}) und Pre-scaling Wert (3322_{h}) zusammen. Sind beide Objekteinträge noch mit Default-Werten beschrieben, wird der Wert in 3320_{h} in der Einheit "ADC digits" angegeben.

Formel zum Umrechnen von digits in die jeweilige Einheit:

- Spannungseingang: x digits * 3,3 V / 1024 digits
- Stromeingang: x digits * 20 mA / 1024 digits

Für die Subeinträge gilt:

- Subindex 00_{h}: Anzahl der Analogeingänge
- Subindex 01_{h}: Analogwert 1
- Subindex 02_{h}: Analogwert 2

3321h Analogue Input Offset

Funktion

Offset, der zum eingelesenen Analogwert (3320_{h}) addiert wird, bevor die Teilung mit dem Teiler aus dem Objekt 3322_{h} vorgenommen wird.

Objektbeschreibung

| Index | 3321_{h}
| Objektname | Analogue Input Offset
| Object Code | ARRAY
| Datentyp | INTEGER32
| Speicherbar | ja, Kategorie: Applikation
| Firmware Version | FIR-v1426
| Änderungshistorie |

Wertebeschreibung

| Subindex | 00_{h}
| Name | Number Of Analogue Inputs

Version: 1.0.1 / FIR-v1748
<table>
<thead>
<tr>
<th>Datentyp</th>
<th>UNSIGNED8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Analogue Input 1</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>00000000h</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Analogue Input 2</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>00000000h</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

- Subindex 00h: Anzahl der Offsets
- Subindex 01h: Offset für Analogeingang 1
- Subindex 02h: Offset für Analogeingang 2

3322h Analogue Input Pre-scaling

Funktion

Wert, mit dem der eingelesene Analogwert (3320h, 3321h) dividiert wird, bevor er in das Objekt 3320h geschrieben wird.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3322h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Analogue Input Pre-scaling</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Number Of Analogue Inputs</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Analogue Input 1</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>alle Werte zulässig außer 0</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Analogue Input 2</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>alle Werte zulässig außer 0</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes enthalten:
- Subindex 00h: Anzahl der Teiler
- Subindex 01h: Teiler für Analogeingang 1
- Subindex 02h: Teiler für Analogeingang 2

3390h Feedback Hall

Funktion

Enthält Konfigurationswerte für die Hall-Sensoren. Die Werte werden vom Auto-Setup ermittelt.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3390h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Feedback Hall</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Tuning</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
</tbody>
</table>
PDO-Mapping: RX-PDO

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>00<sub>h</sub></td>
<td>Highest Sub-index Supported</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>RX-PDO</td>
<td></td>
<td>0C<sub>h</sub></td>
</tr>
<tr>
<td>01<sub>h</sub></td>
<td>1st Alignment</td>
<td>UNSIGNED16</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td></td>
<td>0000<sub>h</sub></td>
</tr>
<tr>
<td>02<sub>h</sub></td>
<td>2nd Alignment</td>
<td>UNSIGNED16</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td></td>
<td>0000<sub>h</sub></td>
</tr>
<tr>
<td>03<sub>h</sub></td>
<td>3rd Alignment</td>
<td>UNSIGNED16</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td></td>
<td>0000<sub>h</sub></td>
</tr>
<tr>
<td>04<sub>h</sub></td>
<td>4th Alignment</td>
<td>UNSIGNED16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Firmware Version: FIR-v1748-B531667

Änderungshistorie

Version: 1.0.1 / FIR-v1748
<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>05\text{h}</td>
<td>5th Alignment</td>
<td>UNSIGNED16</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>0000\text{h}</td>
<td></td>
</tr>
<tr>
<td>06\text{h}</td>
<td>6th Alignment</td>
<td>UNSIGNED16</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>0000\text{h}</td>
<td></td>
</tr>
<tr>
<td>07\text{h}</td>
<td>7th Alignment</td>
<td>UNSIGNED16</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>0000\text{h}</td>
<td></td>
</tr>
<tr>
<td>08\text{h}</td>
<td>8th Alignment</td>
<td>UNSIGNED16</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>0000\text{h}</td>
<td></td>
</tr>
<tr>
<td>09\text{h}</td>
<td>9th Alignment</td>
<td>UNSIGNED16</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>0000\text{h}</td>
<td></td>
</tr>
</tbody>
</table>
11 Objektverzeichnis Beschreibung

33A0h Feedback Incremental A/B/I 1

Funktion

Enthält Konfigurationswerte für den ersten inkrementalen Encoder. Die Werte werden vom **Auto-Setup** ermittelt.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>33A0h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Feedback Incremental A/B/I 1</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Tuning</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B501312</td>
</tr>
</tbody>
</table>
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Configuration</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Alignment</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes haben folgende Funktion:

- **00h (Configuration):** folgende Bits haben eine Bedeutung:
 - Bit 0: Wert = "0": Der Encoder verfügt nicht über einen Index. Wert = "1": Encoder-Index gefunden und soll verwendet werden.
 - Bit 15: Wert = "1": der Encoder ist ein Singleturn-Absolut-Encoder.

- **01h (Alignment):** Dieser Wert gibt den Versatz zwischen dem Index des Encoders und dem elektrischen Feld an.
 Die exakte Bestimmung ist nur über das Auto-Setup möglich. Das Vorhandensein dieses Wertes ist für den Closed Loop-Betrieb mit Encoder erforderlich.

33A1h Feedback Incremental A/B/I 2

Funktion

Enthält Konfigurationswerte für den ersten inkrementalen Encoder. Die Werte werden vom Auto-Setup ermittelt.
Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>33A1h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Feedback Incremental A/B/I 2</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Tuning</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1748-B533384</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Configuration</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Alignment</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes haben folgende Funktion:
- 00h (Configuration): folgende Bits haben eine Bedeutung:
• Bit 0: Wert = "0": Der Encoder verfügt nicht über einen Index. Wert = "1": Encoder-Index gefunden und soll verwendet werden.

• 01\textsubscript{h} (Alignment): Dieser Wert gibt den Versatz zwischen dem Index des Encoders und dem elektrischen Feld an. Die exakte Bestimmung ist nur über das Auto-Setup möglich. Das Vorhandensein dieses Wertes ist für den Closed Loop-Betrieb mit Encoder erforderlich.

3700h Deviation Error Option Code

Funktion

Das Objekt enthält die auszuführende Aktion, wenn ein Schlepp- oder Schlupf­ehler ausgelöst wird.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>3700\textsubscript{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Deviation Error Option Code</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>FFFF\textsubscript{h}</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1738-B501312: Eintrag "Object Name" geändert von "Following Error Option Code" auf "Deviation Error Option Code".</td>
</tr>
</tbody>
</table>

Beschreibung

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768 bis -2</td>
<td>Reserviert</td>
</tr>
<tr>
<td>-1</td>
<td>Keine Reaktion</td>
</tr>
<tr>
<td>0</td>
<td>Soforthalt</td>
</tr>
<tr>
<td>1</td>
<td>Abbremsen mit "slow down ramp" (Verzögerung (Bremsrampe) je nach Betriebsart)</td>
</tr>
<tr>
<td>2</td>
<td>Abbremsen mit "quick stop ramp" (Verzögerung (Bremsrampe) je nach Betriebsart)</td>
</tr>
<tr>
<td>3 bis 32767</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

4012h HW Information

Funktion

Dieses Objekt zeigt Informationen über die Hardware an.
Objektbeschreibung

Index 4012h
Objektnname HW Information
Object Code ARRAY
Datentyp UNSIGNED32
Speicherbar nein
Zugriff nur lesen
PDO-Mapping nein
Zulässige Werte
Vorgabewert
Firmware Version FIR-v1540
Änderungshistorie

Wertebeschreibung

Subindex 00h
Name Highest Sub-index Supported
Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein
Zulässige Werte
Vorgabewert 01h

Subindex 01h
Name EEPROM Size In Bytes
Datentyp UNSIGNED32
Zugriff nur lesen
PDO-Mapping nein
Zulässige Werte
Vorgabewert 00000000h

Beschreibung

Subindex 01: Zeigt die Größe des angeschlossenen EEPROMs in Bytes an. Der Wert "0" bedeutet, dass kein EEPROM angeschlossen ist.

4013h HW Configuration

Funktion

Mit diesem Objekt kann man bestimmte Hardware-Konfigurationen einstellen.

Objektbeschreibung

Index 4013h
Objektnname HW Configuration
Object Code: ARRAY
Datentyp: UNSIGNED32
Speicherbar: ja, Kategorie: Applikation
Zugriff: nur lesen
PDO-Mapping: nein
Zulässige Werte
Vorgabewert
Firmware Version: FIR-v1540
Änderungshistorie

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Highest Sub-index Supported</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>nein</td>
<td></td>
<td>01h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>01h</td>
<td>HW Configuration #1</td>
<td>UNSIGNED32</td>
<td>lesen/schreiben</td>
<td>nein</td>
<td></td>
<td>00000000h</td>
</tr>
</tbody>
</table>

Beschreibung

Bit 0 : reserviert

4014h Operating Conditions

Funktion

Dieses Objekt dient zum Auslesen aktueller Umgebungswerte der Steuerung.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>Objektnamen</th>
<th>Object Code</th>
<th>Datentyp</th>
<th>Speicherbar</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>4014h</td>
<td>Operating Conditions</td>
<td>ARRAY</td>
<td>INTEGER32</td>
<td>nein</td>
<td>nur lesen</td>
<td>nein</td>
</tr>
</tbody>
</table>
Zulässige Werte
Vorgabewert
Firmware Version
Änderungshistorie

FIR-v1540

Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 01 geändert von "lesen/schreiben" auf "nur lesen".

Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 02 geändert von "lesen/schreiben" auf "nur lesen".

Firmware Version FIR-v1650-B472161: Eintrag "Name" geändert von "Temperature PCB [d?C]" auf "Temperature PCB [Celsius * 10]".

Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 03 geändert von "lesen/schreiben" auf "nur lesen".

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>05h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Voltage UB Power [mV]</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Voltage UB Logic [mV]</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>03h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Temperature PCB [Celsius * 10]</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
</tbody>
</table>
Beschreibung

Die Subindizes enthalten:

- 01_h: aktuelle Versorgungsspannung in [mV]
- 02_h: aktuelle Logikspannung in [mV]
- 03_h: aktuelle Temperatur der Steuerungsplatine in [°C] (Zehntelgrad)
- 04_h: reserviert
- 05_h: reserviert

4040h Drive Serial Number

Funktion

Dieses Objekt hält die Seriennummer der Steuerung.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>4040<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Drive Serial Number</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>VISIBLE_STRING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>0</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1450</td>
</tr>
</tbody>
</table>
4041h Device Id

Funktion

Dieses Objekt hält die ID des Geräts.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>4041h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Device Id</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>OCTET_STRING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1540</td>
</tr>
</tbody>
</table>

603Fh Error Code

Funktion

Dieses Objekt liefert den Error-Code des letzten aufgetretenen Fehlers.

Er entspricht den unteren 16-Bits des Objekts 1003h. Für die Beschreibung der Error-Codes schauen Sie unter Objekt 1003h nach.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>603Fh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Error Code</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Beschreibung

Bedeutung des Fehlers siehe Objekt 1003h (Pre-defined Error Field).
6040h Controlword

Funktion

Dieses Objekt steuert die CiA 402 Power State Machine.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6040h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Controlword</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".</td>
</tr>
</tbody>
</table>

Beschreibung

Teile des Objektes sind in der Funktion abhängig vom aktuell gewählten Modus.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | OMS | HALT | FR | OMS [3] | EO | QS | EV | SO |

SO (Switched On)
Wert = "1": Schaltet in den Zustand "Switched on"

EV (Enable Voltage)
Wert = "1": Schaltet in den Zustand "Enable voltage"

QS (Quick Stop)
Wert = "0": Schalten in den Zustand "Quick stop"

EO (Enable Operation)
Wert = "1": Schalten in den Zustand "Enable operation"

OMS (Operation Mode Specific)
Bedeutung abhängig vom gewählten Betriebsmodus

FR (Fault Reset)
Setzt einen Fehler zurück (falls möglich)

HALT
Wert = "1": Löst einen Halt aus, gültig in folgenden Modi:
- Profile Position
- Velocity
- Profile Velocity
- Profile Torque
• Interpolated Position Mode

6041h Statusword

Funktion

Dieses Objekt liefert Informationen zum Status der CiA 402 Power State Machine.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6041h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objetname</td>
<td>Statusword</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Beschreibung

Teile des Objektes sind in der Funktion abhängig vom aktuell gewählten Modus. Schlagen Sie im entsprechenden Unterkapitel im Kapitel Betriebsmodi nach.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLA</td>
<td>OMS [2]</td>
<td>ILA</td>
<td>TARG</td>
<td>REM</td>
<td>SYNC</td>
<td>WARN</td>
<td>SOD</td>
<td>QS</td>
<td>VE</td>
<td>FAULT</td>
<td>OE</td>
<td>SO</td>
<td>RTSO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RTSO (Ready To Switch On)
Wert = "1": Steuerung befindet sich in dem Zustand "Ready To Switch On"

SO (Switched On)
Wert = "1": Steuerung befindet sich in dem Zustand "Switched On"

OE (Operation Enabled)
Wert = "1": Steuerung befindet sich in dem Zustand "Operation Enabled"

FAULT
Fehler vorgefallen

VE (Voltage Enabled)
Spannung angelegt

QS (Quick Stop)
Wert = "0": Steuerung befindet sich in dem Zustand "Quick Stop"

SOD (Switched On Disabled)
Wert = "1": Steuerung befindet sich in dem Zustand "Switched On Disabled"
WARN (Warning)
Wert = "1": Warnung

SYNC (Synchronisation)
Wert = "1": Steuerung ist synchron zum Feldbus, Wert = "0": Steuerung ist nicht synchron zum Feldbus

REM (Remote)
Remote (Wert des Bits immer "1")

TARG
Zielvorgabe erreicht

ILA (Internal Limit Active)
Limit überschritten

OMS (Operation Mode Specific)
Bedeutung abhängig vom gewählten Betriebsmodus

CLA (Closed Loop Active)
Wert = "1": die Steuerung befindet sich im Status Operation enabled und der Closed Loop ist aktiviert.

In der nachfolgenden Tabelle sind die Bitmasken aufgelistet, die den Zustand der Steuerung aufschlüsseln.

<table>
<thead>
<tr>
<th>Statusword (6041h)</th>
<th>Zustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx xxxx x0xx 0000</td>
<td>Not ready to switch on</td>
</tr>
<tr>
<td>xxxx xxxx x1xx 0000</td>
<td>Switch on disabled</td>
</tr>
<tr>
<td>xxxx xxxx x01x 0001</td>
<td>Ready to switch on</td>
</tr>
<tr>
<td>xxxx xxxx x01x 0011</td>
<td>Switched on</td>
</tr>
<tr>
<td>xxxx xxxx x01x 0111</td>
<td>Operation enabled</td>
</tr>
<tr>
<td>xxxx xxxx x00x 0111</td>
<td>Quick stop active</td>
</tr>
<tr>
<td>xxxx xxxx x0xx 1111</td>
<td>Fault reaction active</td>
</tr>
<tr>
<td>xxxx xxxx x0xx 1000</td>
<td>Fault</td>
</tr>
</tbody>
</table>

6042h VI Target Velocity

Funktion
Gibt die Zielgeschwindigkeit für den Velocity Modus in benutzerdefinierten Einheiten an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6042h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>VI Target Velocity</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
</tbody>
</table>
6043h VI Velocity Demand

Funktion

Vorgabegeschwindigkeit in **benutzerdefinierten Einheiten** für den Regler im **Velocity** Mode.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6043h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>VI Velocity Demand</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

6044h VI Velocity Actual Value

Funktion

Gibt die aktuelle Istgeschwindigkeit im **Velocity** Modus in **benutzerdefinierten Einheiten** an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6044h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>VI Velocity Actual Value</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>
6046h VI Velocity Min Max Amount

Funktion

Mit diesem Objekt können Minimalgeschwindigkeit und Maximalgeschwindigkeit in *benutzerdefinierten Einheiten* eingestellt werden.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6046h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>VI Velocity Min Max Amount</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>MinAmount</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>MaxAmount</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00004E20h</td>
</tr>
</tbody>
</table>

Beschreibung

Subindex 1 enthält die Minimalgeschwindigkeit.
Subindex 2 enthält die Maximalgeschwindigkeit.

Wird eine Zielgeschwindigkeit (Objekt \textbf{6042}_{h}) vom Betrag her kleiner als die Minimalgeschwindigkeit angegeben, gilt die Minimalgeschwindigkeit und das Bit 11 (Internal Limit Reached) in \textbf{6041}_{h} Statusword, wird gesetzt.

Eine Zielgeschwindigkeit größer als die Maximalgeschwindigkeit setzt die Geschwindigkeit auf die Maximalgeschwindigkeit und das Bit 11 (Internal Limit Reached) in \textbf{6041}_{h} Statusword, wird gesetzt.

\textbf{6048h VI Velocity Acceleration}

\textbf{Funktion}

Setzt die Beschleunigungsrampe im Velocity Mode (siehe \textit{Velocity}).

\textbf{Objektbeschreibung}

<table>
<thead>
<tr>
<th>Index</th>
<th>\textbf{6048}_{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>VI Velocity Acceleration</td>
</tr>
<tr>
<td>Object Code</td>
<td>RECORD</td>
</tr>
<tr>
<td>Datentyp</td>
<td>VELOCITY_ACCELERATION_DECELERATION</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

\textbf{Wertebeschreibung}

<table>
<thead>
<tr>
<th>Subindex</th>
<th>\textbf{00}_{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02_{h}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>\textbf{01}_{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>DeltaSpeed</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000001F4_{h}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>\textbf{02}_{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>DeltaTime</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Zulässige Werte
Vorgabewert 0001h

Beschreibung

Die Beschleunigung wird als Bruch in benutzerdefinierten Einheiten angegeben:
Geschwindigkeitsänderung pro Zeitänderung.
Subindex 01h: enthält die Geschwindigkeitsänderung.
Subindex 02h: enthält die Zeitänderung.

6049h VI Velocity Deceleration

Funktion

Setzt die Verzögerung (Bremsrampe) im Velocity Mode (siehe Velocity).

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6049h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>VI Velocity Deceleration</td>
</tr>
<tr>
<td>Object Code</td>
<td>RECORD</td>
</tr>
<tr>
<td>Datentyp</td>
<td>VELOCITY_ACCELERATION_DECELERATION</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Änderungshistorie

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>DeltaSpeed</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000001F4h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
</table>
Name:DeltaTime
Datentyp:UNSIGNED16
Zugriff:lesen/schreiben
PDO-Mapping:RX-PDO
Zulässige Werte
Vorgabewert:0001_h

Beschreibung
Die Verzögerung wird als Bruch in benutzerdefinierten Einheiten angegeben:
Geschwindigkeitsänderung pro Zeitänderung.
Subindex 01_h: enthält die Geschwindigkeitsänderung.
Subindex 02_h: enthält die Zeitänderung.

604Ah VI Velocity Quick Stop

Funktion
Dieses Objekt definiert die Verzögerung (Bremsrampe), wenn im Velocity Mode der Quick Stop-Zustand eingeleitet wird.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>604A_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>VI Velocity Quick Stop</td>
</tr>
<tr>
<td>Object Code</td>
<td>RECORD</td>
</tr>
<tr>
<td>Datentyp</td>
<td>VELOCITY_ACCELERATION_DECELERATION</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02_h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>DeltaSpeed</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
</tbody>
</table>
Zulässige Werte
Vorgabewert \(00001388_h\)

<table>
<thead>
<tr>
<th>Subindex</th>
<th>(02_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>DeltaTime</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>(0001_h)</td>
</tr>
</tbody>
</table>

Beschreibung

Die Verzögerung wird als Bruch in benutzerdefinierten Einheiten angegeben:

- Geschwindigkeitsänderung pro Zeitänderung.
- Subindex \(01_h\): enthält die Geschwindigkeitsänderung.
- Subindex \(02_h\): enthält die Zeitänderung.

604Ch VI Dimension Factor

Funktion

Hier wird die Einheit der Geschwindigkeitsangaben für die Objekte festgelegt, welche den Velocity Mode betreffen.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>(604C_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>VI Dimension Factor</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>(00_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>(02_h)</td>
</tr>
</tbody>
</table>

| Subindex | \(01_h\) |
Beschreibung

Der Subindex 1 enthält den Zähler (Multiplikator) und der Subindex 2 den Nenner (Divisor), mit dem interne Geschwindigkeitsangaben in Umdrehungen pro Minute verrechnet werden. Wird z.B. Subindex 1 auf den Wert "60" und Subindex 2 auf den Wert "1" eingestellt, erfolgt die Geschwindigkeitsangabe in Umdrehungen pro Sekunde (60 Umdrehungen pro 1 Minute).

605Ah Quick Stop Option Code

Funktion

Das Objekt enthält die auszuführende Aktion bei einem Übergang der **CIA 402 Power State Machine** in den Zustand **Quick Stop**.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>605A<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Quick Stop Option Code</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>0001<sub>h</sub></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001<sub>h</sub></td>
</tr>
</tbody>
</table>

Änderungshistorie

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768 bis -1</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>
605Bh Shutdown Option Code

Funktion

Das Objekt enthält die auszuführende Aktion bei einem Übergang der **CiA 402 Power State Machine** vom Zustand *Operation enabled* in den Zustand *Ready to switch on*.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>605Bh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Shutdown Option Code</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0001h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Beschreibung

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768 bis -1</td>
<td>Reserviert</td>
</tr>
<tr>
<td>0</td>
<td>Soforthalt</td>
</tr>
<tr>
<td>1</td>
<td>Abbremsen mit "slow down ramp" (Verzögerung (Bremsrampe) je nach Betriebsart) und anschließendem Zustandswechsel zu "Switch on disabled"</td>
</tr>
<tr>
<td>2 bis 32767</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

605Ch Disable Option Code

Funktion

Das Objekt enthält die auszuführende Aktion bei einem Übergang der **CiA 402 Power State Machine** vom Zustand *Operation enabled* in den Zustand *Switched on*.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>605Ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Disable Option Code</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0001h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>
Objektverzeichnis Beschreibung

<table>
<thead>
<tr>
<th>Objektname</th>
<th>Disable Option Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0001<h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768 bis -1</td>
<td>Reserviert</td>
</tr>
<tr>
<td>0</td>
<td>Soforthalt</td>
</tr>
<tr>
<td>1</td>
<td>Abbremsen mit "slow down ramp" (Verzögerung (Bremsrampe) je nach Betriebsart) und anschließendem Zustandswechsel zu "Switch on disabled"</td>
</tr>
<tr>
<td>2 bis 32767</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

605Dh Halt Option Code

Funktion

Das Objekt enthält die auszuführende Aktion, wenn im Controlword 6040<h das Bit 8 (Halt) gesetzt wird.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>605D<h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Halt Option Code</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0001<h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768 bis 0</td>
<td>Reserviert</td>
</tr>
<tr>
<td>1</td>
<td>Abbremsen mit "slow down ramp" (Verzögerung (Bremsrampe) je nach Betriebsart)</td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Abbremsen mit "quick stop ramp" (Verzögerung (Bremsrampe) je nach Betriebsart)</td>
</tr>
<tr>
<td>3 bis 32767</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

605Eh Fault Option Code

Funktion

Das Objekt enthält die auszuführende Aktion, wie der Motor im Fehlerfall zum Stillstand gebracht werden soll.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>605Eh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Fault Option Code</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0002h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768 bis -1</td>
<td>Reserviert</td>
</tr>
<tr>
<td>0</td>
<td>Soforthalt</td>
</tr>
<tr>
<td>1</td>
<td>Abbremsen mit "slow down ramp" (Verzögerung (Bremsrampe) je nach Betriebsart)</td>
</tr>
<tr>
<td>2</td>
<td>Abbremsen mit "quick stop ramp" (Verzögerung (Bremsrampe) je nach Betriebsart)</td>
</tr>
<tr>
<td>3 bis 32767</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

6060h Modes Of Operation

Funktion

In dieses Objekt wird der gewünschte Betriebsmodus eingetragen.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6060h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Modes Of Operation</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
</tbody>
</table>
Datentyp: INTEGER8
Speicherbar: ja, Kategorie: Applikation
Zugriff: lesen/schreiben
PDO-Mapping: RX-PDO
Zulässige Werte: 00h
Vorgabewert: FIR-v1426
Änderungshistorie: Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".

Beschreibung

<table>
<thead>
<tr>
<th>Modus</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>Auto-Setup</td>
</tr>
<tr>
<td>-1</td>
<td>Takt-Richtungsmodus</td>
</tr>
<tr>
<td>0</td>
<td>No mode change/no mode assigned</td>
</tr>
<tr>
<td>1</td>
<td>Profile Position Mode</td>
</tr>
<tr>
<td>2</td>
<td>Velocity Mode</td>
</tr>
<tr>
<td>3</td>
<td>Profile Velocity Mode</td>
</tr>
<tr>
<td>4</td>
<td>Profile Torque Mode</td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>Homing Mode</td>
</tr>
<tr>
<td>7</td>
<td>Interpolated Position Mode</td>
</tr>
<tr>
<td>8</td>
<td>Cyclic Synchronous Position Mode</td>
</tr>
<tr>
<td>9</td>
<td>Cyclic Synchronous Velocity Mode</td>
</tr>
<tr>
<td>10</td>
<td>Cyclic Synchronous Torque Mode</td>
</tr>
</tbody>
</table>

6061h Modes Of Operation Display

Funktion

Zeigt den aktuellen Betriebsmodus. Siehe auch **6060h Modes Of Operation**.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6061h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Modes Of Operation Display</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER8</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>00h</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>FIR-v1626</td>
</tr>
</tbody>
</table>
6062h Position Demand Value

Funktion

Gibt die aktuelle Sollposition in **benutzerdefinierten Einheiten** an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6062h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Position Demand Value</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

6063h Position Actual Internal Value

Funktion

Enthält die aktuelle Drehgeberposition in Inkrementen. Im Gegensatz zu den Objekten 6062h und 6064h wird dieser Wert nach einem **Homing** nicht auf "0" gesetzt.

Hinweis

Ist die Encoderauflösung im Objekt 608Fh = 0, sind die Zahlenwerte dieses Objekts ungültig.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6063h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Position Actual Internal Value</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>
6064h Position Actual Value

Funktion

Enthält die aktuelle Istposition in benutzerdefinierten Einheiten.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6064h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Position Actual Value</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

6065h Following Error Window

Funktion

Definiert den maximal erlaubten Schleppfehler in benutzerdefinierten Einheiten symmetrisch zur Sollposition.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6065h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Following Error Window</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000100h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Beschreibung

Weicht die Istposition von der Sollposition so stark ab, dass der Wert dieses Objekts überschritten wird, wird das Bit 13 im Objekt 6041h gesetzt. Die Abweichung muss länger andauern als die Zeit in dem Objekt 6066h.

Wird der Wert des "Following Error Window" auf "FFFFFFFF"h gesetzt, wird die Schleppfehler-Überwachung abgeschaltet.
In dem Objekt \textit{3700}_h kann eine Reaktion auf den Schleppfehler gesetzt werden. Wenn eine Reaktion definiert ist, wird auch ein Fehler im Objekt \textit{1003}_h eingetragen.

\section*{6066h Following Error Time Out}

\textbf{Funktion}

Zeit in Millisekunden, bis ein zu großer Schleppfehler zu einer Fehlermeldung führt.

\section*{Objektbeschreibung}

\begin{tabular}{ll}
Index & 6066_h \\
Objektnamen & Following Error Time Out \\
Object Code & VARIABLE \\
Datentyp & UNSIGNED16 \\
Speicherbar & ja, Kategorie: Applikation \\
Zugriff & lesen/schreiben \\
PDO-Mapping & RX-PDO \\
Zulässige Werte & \\
Vorgabewert & 0064_h \\
Firmware Version & FIR-v1426 \\
Änderungshistorie & Firmware Version FIR-v1504: Eintrag "Savable" geändert von "nein" auf "ja, Kategorie: Applikation".
\end{tabular}

\section*{Beschreibung}

Weicht die Istposition von der Sollposition so stark ab, dass der Wert des Objekts \textit{6065}_h überschritten wird, wird das Bit 13 im Objekt \textit{6041}_h gesetzt. Die Abweichung muss länger als die Zeit in diesem Objekt anhalten.

In dem Objekt \textit{3700}_h kann eine Reaktion auf den Schleppfehler gesetzt werden. Wenn eine Reaktion definiert ist, wird auch ein Fehler im Objekt \textit{1003}_h eingetragen.

\section*{6067h Position Window}

\textbf{Funktion}

Gibt relativ zur Zielposition einen symmetrischen Bereich an, innerhalb dessen das Ziel als erreicht gilt in den Modi \textit{Profile Position} und \textit{Interpolated Position Mode}.

\section*{Objektbeschreibung}

\begin{tabular}{ll}
Index & 6067_h \\
Objektnamen & Position Window \\
Object Code & VARIABLE \\
Datentyp & UNSIGNED32 \\
Speicherbar & ja, Kategorie: Applikation \\
Zugriff & lesen/schreiben \\
PDO-Mapping & RX-PDO \\
Zulässige Werte & \\
Vorgabewert & 0000000A_h
\end{tabular}
Beschreibung

Ist die Abweichung der Istposition zur Zielposition kleiner als der Wert dieses Objekts, wird das Bit 10 im Objekt \texttt{6041h} gesetzt. Die Bedingung muss länger erfüllt sein als die im Objekt \texttt{6066h} definierte Zeit. Wird der Wert auf "FFFFFFFFFF" gesetzt, wird die Überwachung abgeschaltet.

6068h Position Window Time

Funktion

Die Istposition muss sich für diese Zeit in Millisekunden innerhalb des "Position Window" (\texttt{6067h}) befinden, damit die Zielposition als erreicht gilt in den Modi **Profile Position** und **Interpolated Position Mode**.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6068h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Position Window Time</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>0064h</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0064h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1504: Eintrag "Savable" geändert von "nein" auf "ja, Kategorie: Applikation".</td>
</tr>
</tbody>
</table>

Beschreibung

Ist die Abweichung der Istposition zur Zielposition kleiner als der Wert des Objekts \texttt{6067h}, wird das Bit 10 im Objekt \texttt{6041h} gesetzt. Die Bedingung muss länger erfüllt sein als die im Objekt \texttt{6066h} definierte Zeit.

606Bh Velocity Demand Value

Funktion

Vorgabegeschwindigkeit in **benutzerdefinierten Einheiten** für den Regler im **Profile Velocity Mode**.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>606Bh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Velocity Demand Value</td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Beschreibung

Dieses Objekt enthält die Ausgabe des Rampengenerators, die gleichzeitig der Vorgabewert für den Geschwindigkeitsregler ist.

606Ch Velocity Actual Value

Funktion

Aktuelle Istgeschwindigkeit in benutzerdefinierten Einheiten.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>606Ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Velocity Actual Value</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

606Dh Velocity Window

Funktion

Gibt relativ zur Zielgeschwindigkeit einen symmetrischen Bereich an, innerhalb dessen das Ziel als erreicht gilt im Modus Profile Velocity.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>606Dh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Velocity Window</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td></td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td></td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td></td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>
Beschreibung

Ist die Abweichung der Istgeschwindigkeit zur Sollgeschwindigkeit kleiner als der Wert dieses Objekts, wird das Bit 10 im Objekt \(\text{6041}_h\) gesetzt. Die Bedingung muss länger erfüllt sein als die im Objekt \(\text{6066}_h\) definierte Zeit (siehe auch Statusword im Modus Profile Velocity).

606Eh Velocity Window Time

Funktion

Die Istgeschwindigkeit muss sich für diese Zeit in Millisekunden innerhalb des "Velocity Window" (\(\text{606D}_h\)) befinden, damit das Ziel als erreicht gilt.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>(\text{606E}_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Velocity Window Time</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>(0000_h)</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".</td>
</tr>
</tbody>
</table>

Beschreibung

Ist die Abweichung der Istgeschwindigkeit zur Sollgeschwindigkeit kleiner als der Wert des Objekts \(\text{606D}_h\), wird das Bit 10 im Objekt \(\text{6041}_h\) gesetzt. Die Bedingung muss länger erfüllt sein als die im Objekt \(\text{6066}_h\) definierte Zeit (siehe auch Statusword im Modus Profile Velocity).

6071h Target Torque

Funktion

Dieses Objekt enthält das Zieldrehmoment für den Profile Torque und Cyclic Synchronous Torque Modus in Promille des Nenndrehmoments.
Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6071h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Target Torque</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".</td>
</tr>
</tbody>
</table>

Beschreibung

Dieses Objekt wird als Tausendstel des Drehmoments gerechnet, z.B. der Wert “500” bedeutet “50%” des Nenndrehmoments, “1100” ist äquivalent zu 110%. Das Nenndrehmoment entspricht dem Nennstrom im Objekt 203Bh:01.

Das Zieldrehmoment kann das Spitzendrehmoment (proportional zum Spitzenstrom in 2031h) nicht übersteigen.

6072h Max Torque

Funktion

Das Objekt beschreibt das maximale Drehmoment für den Profile Torque und Cyclic Synchronous Torque Modus in Promille des Nenndrehmoments.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6072h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Max Torque</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

Dieses Objekt wird als Tausendstel des Drehmoments gerechnet, z.B. der Wert “500” bedeutet “50%” des Nenndrehmoments, “1100” ist äquivalent zu 110%. Das Nenndrehmoment entspricht dem Nennstrom im Objekt 203Bh:01.
Das Zieldrehmoment kann das Spitzendrehmoment (proportional zum Spitzenstrom in 2031_h) nicht übersteigen.

6074h Torque Demand

Funktion

Momentaner vom Rampengenerator geforderter Drehmomentsollwert in Promille des Nominaldrehmoments für den internen Regler.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6074h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Torque Demand</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Beschreibung

Dieses Objekt wird als Tausendstel des Drehmoments gerechnet, z.B. der Wert "500" bedeutet "50%" des Nenndrehmoments, "1100" ist äquivalent zu 110%. Das Nenndrehmoment entspricht dem Nennstrom im Objekt $203B_h$;01.

Das Zieldrehmoment kann das Spitzendrehmoment (proportional zum Spitzenstrom in 2031_h) nicht übersteigen.

6075h Motor Rated Current

Funktion

Enthält den in $203B_h$;01h eingetragenen Nennstrom in mA.

6077h Torque Actual Value

Funktion

Dieses Objekt zeigt den aktuellen Drehmomentwert in Promille des Nenndrehmoments für den internen Regler.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6077h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Torque Actual Value</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
</tbody>
</table>
Beschreibung

Dieses Objekt wird als Tausendstel des Drehmoments gerechnet, z.B. der Wert "500" bedeutet "50%" des Nenndrehmoments, "1100" ist äquivalent zu 110%. Das Nenndrehmoment entspricht dem Nennstrom im Objekt 203Bₘₙₚ:01.

Das Zieldrehmoment kann das Spitzendrehmoment (proportional zum Spitzenstrom in 203₁ₙₚ) nicht übersteigen.

607Ah Target Position

Funktion

Dieses Objekt gibt die Zielposition in benutzerdefinierten Einheiten für den Profile Position und Cyclic Synchronous Position Modus an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>607Ah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Target Position</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000FA₀ₘₙₚ</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".</td>
</tr>
</tbody>
</table>

607Bh Position Range Limit

Funktion

Enthält die Minimal- und Maximalposition in benutzerdefinierten Einheiten.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>607Bₘₙₚ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Position Range Limit</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Technisches Handbuch NP5-20 (EtherCAT)

11 Objektverzeichnis Beschreibung

Datentyp: INTEGER32
Speicherbar: ja, Kategorie: Applikation
Firmware Version: FIR-v1426

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Highest Sub-index Supported</td>
<td>UNSIGNED8</td>
<td>nur lesen</td>
<td>nein</td>
<td>02h</td>
<td></td>
</tr>
<tr>
<td>01h</td>
<td>Min Position Range Limit</td>
<td>INTEGER32</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>00000000h</td>
<td></td>
</tr>
<tr>
<td>02h</td>
<td>Max Position Range Limit</td>
<td>INTEGER32</td>
<td>lesen/schreiben</td>
<td>RX-PDO</td>
<td>00000000h</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

Wird dieser Bereich über- oder unterschritten, erfolgt ein Überlauf. Um diesen Überlauf zu verhindern, können im Objekt 607Dₜₜ ("Software Position Limit") Grenzwerte für die Zielposition eingestellt werden.

607Ch Home Offset

Funktion

Gibt die Differenz zwischen Null-Position der Steuerung und dem Referenzpunkt der Maschine in benutzerdefinierten Einheiten an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>607Cₜₜ</th>
</tr>
</thead>
</table>

Version: 1.0.1 / FIR-v1748
607Dh Software Position Limit

Funktion
Legt die Grenzpositionen relativ zum Referenzpunkt der Applikation in benutzerdefinierten Einheiten fest.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>607Dh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Software Position Limit</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Min Position Limit</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>
Subindex 02ₘ

Name Max Position Limit

Datentyp INTEGER32

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000ₘ

Beschreibung

Die absolute Zielposition muss innerhalb der hier gesetzten Grenzen liegen. Der Home Offset (607Cₘ) wird nicht berücksichtigt.

607Eₘh Polarity

Funktion

Mit diesem Objekt lässt sich die Drehrichtung umkehren.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>607Eₘh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Polarity</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00ₘ</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1738-B501312: Tabellen-Eintrag "PDO-Mapping" bei Subindex 00 geändert von "nein" auf "RX-PDO".</td>
</tr>
</tbody>
</table>

Beschreibung

Generell gilt für die Richtungsumkehr: Ist ein Bit auf den Wert "1" gesetzt, ist die Umkehrung aktiviert. Ist der Wert "0", ist die Drehrichtung wie im jeweiligen Modus beschrieben.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS</td>
<td>VEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VEL (Velocity)

Umkehr der Drehrichtung in folgenden Modi:

- Profile Velocity Mode
- Cyclic Synchronous Velocity Mode
- Velocity Mode
POS (Position)

Umkehr der Drehrichtung in folgenden Modi:

- Profile Position Mode
- Cyclic Synchronous Position Mode

Tipp

Sie können ein Invertieren des Drehfeldes erzwingen, dass alle Betriebsmodi betrifft. Siehe Objekt 3212h:02h.

607Fh Max Profile Velocity

Funktion

Gibt die maximale Geschwindigkeit für den Modus Profile Position, Interpolated Position Mode und Profile Velocity in Benutzerdefinierten Einheiten an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>607Fh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Max Profile Velocity</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00030D40h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1540</td>
</tr>
</tbody>
</table>

6080h Max Motor Speed

Funktion

Gibt die maximal zulässige Geschwindigkeit des Motors in Benutzerdefinierten Einheiten an.
Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6080h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Max Motor Speed</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Tuning</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00030D40h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

6081h Profile Velocity

Funktion

Gibt die maximale Fahrgeschwindigkeit in benutzerdefinierten Einheiten an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6081h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Profile Velocity</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000001F4h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

6082h End Velocity

Funktion

Gibt die Geschwindigkeit am Ende der gefahrenen Rampe in benutzerdefinierten Einheiten an.
Objektbeschreibung

Index | 6082h
Objektname | End Velocity
Object Code | VARIABLE
Datentyp | UNSIGNED32
Speicherbar | ja, Kategorie: Applikation
Zugriff | lesen/schreiben
PDO-Mapping | RX-PDO
Zulässige Werte
Vorgabewert | 00000000h
Firmware Version | FIR-v1426
Änderungshistorie

6083h Profile Acceleration

Funktion
Gibt die maximale Beschleunigung in benutzerdefinierten Einheiten an.

Objektbeschreibung

Index | 6083h
Objektname | Profile Acceleration
Object Code | VARIABLE
Datentyp | UNSIGNED32
Speicherbar | ja, Kategorie: Applikation
Zugriff | lesen/schreiben
PDO-Mapping | RX-PDO
Zulässige Werte
Vorgabewert | 000001F4h
Firmware Version | FIR-v1426
Änderungshistorie

6084h Profile Deceleration

Funktion
Gibt die maximale Verzögerung (Bremsrampe) in benutzerdefinierten Einheiten an.

Objektbeschreibung

Index | 6084h
Objektname | Profile Deceleration
Object Code | VARIABLE
Datentyp | UNSIGNED32
Speicherbar | ja, Kategorie: Applikation
Zugriff | lesen/schreiben
PDO-Mapping: RX-PDO
Zulässige Werte: 00001F4h
Vorgabewert: 000001F4h
Firmware Version: FIR-v1426
Änderungshistorie:

6085h Quick Stop Deceleration

Funktion

Gibt die maximale Quick Stop-Verzögerung in **benutzerdefinierten Einheiten** an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6085h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Quick Stop Deceleration</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00001388h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

6086h Motion Profile Type

Funktion

Gibt den Rampentyp für die Modi **Profile Position** und **Profile Velocity** an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6086h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Motion Profile Type</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>
Beschreibung

Wert = "0": Trapez-Rampe
Wert = "3": Rampe mit begrenztem Ruck

6087h Torque Slope

Funktion

Dieses Objekt enthält die Steigung des Drehmoments im Torque Mode.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6087h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Torque Slope</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>00000000h</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Beschreibung

Dieses Objekt wird als Tausendstel des Drehmoments gerechnet, z.B. der Wert "500" bedeutet "50%" des Nenndrehmoments, "1100" ist äquivalent zu 110%. Das Nenndrehmoment entspricht dem Nennstrom im Objekt 203Bh:01.

Das Zieldrehmoment kann das Spitzendrehmoment (proportional zum Spitzenstrom in 2031h) nicht übersteigen.

608Fh Position Encoder Resolution

Funktion

Enthält die physikalische Auflösung des Encoders/Sensors, der für die Positionsregelung verwendet wird.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>608Fh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Position Encoder Resolution</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Tuning</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version F1R-v1738-B501312: Eintrag "Speicherbar" geändert von "ja, Kategorie: Applikation" auf "ja, Kategorie: Tuning".</td>
</tr>
</tbody>
</table>
Firmware Version FIR-v1738-B501312: Tabellen-Eintrag "PDO-Mapping" bei Subindex 01 geändert von "nein" auf "RX-PDO".
Firmware Version FIR-v1738-B501312: Tabellen-Eintrag "PDO-Mapping" bei Subindex 02 geändert von "nein" auf "RX-PDO".

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Encoder Increments</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000007D0h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Motor Revolutions</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>

Beschreibung

Position Encoder Resolution = Encoder Increments (608Fh:01h) / Motor Revolutions (608Fh:02h)

6090h Velocity Encoder Resolution

Funktion

Enthält die physikalische Auflösung des Encoders/Sensors, der für die Drehzahlregelung verwendet wird.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6090h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Velocity Encoder Resolution</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Tuning</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B501312</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00(^h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02(^h)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01(^h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Encoder Increments Per Second</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000(^h)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02(^h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Motor Revolutions Per Second</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000(^h)</td>
</tr>
</tbody>
</table>

Beschreibung

\[\text{Velocity Encoder Resolution} = \frac{\text{Encoder Increments per second (6090\(^0\):01\(^h\)})}{\text{Motor Revolutions per second (6090\(^0\):02\(^h\)})}\]

6091h Gear Ratio

Funktion

Anzahl der Motorumdrehungen pro Umdrehung der Abtriebsachse.
Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6091h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Gear Ratio</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Motor Revolutions</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Shaft Revolutions</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>

Beschreibung

Gear Ratio = Motor Revolutions (6091h;01h) / Shaft Revolutions (6091h;02h)
6092h Feed Constant

Funktion

Vorschub im Falle eines Linearantriebs, in benutzerdefinierten Einheiten pro Umdrehungen der Abtriebsachse.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6092h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Feed Constant</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Feed</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Shaft Revolutions</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>

Beschreibung

Feed Constant = Feed (6092h:01h) / Shaft Revolutions (6092h:02h)
6096h Velocity Factor

Funktion

Dieses Objekt beinhaltet den Faktor, der zum Umrechnen von benutzerdefinierten Geschwindigkeitseinheiten verwendet wird. Siehe Kapitel **Benutzerdefinierte Einheiten**.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6096h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Velocity Factor</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B501312</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Numerator</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Divisor</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>
Beschreibung

Die Subindizes haben folgende Funktionen:

- \(01_h\): Zähler des Faktors
- \(02_h\): Nenner des Faktors

6097h Acceleration Factor

Funktion

Dieses Objekt beinhaltet den Faktor, der zum Umrechnen von benutzerdefinierten Beschleunigungseinheiten verwendet wird. Siehe Kapitel Benutzerdefinierte Einheiten.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6097h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Acceleration Factor</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B501312</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Numerator</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Divisor</td>
</tr>
</tbody>
</table>
Datentyp UNSIGNED32
Zugriff lesen/schreiben
PDO-Mapping RX-PDO
Zulässige Werte
Vorgabewert 00000001h

Beschreibung

Die Subindizes haben folgende Funktionen:
- 01h: Zähler des Faktors
- 02h: Nenner des Faktors

6098h Homing Method

Funktion

Dieses Objekt definiert die *Referenzfahrt-Methode* im *Homing* Mode.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6098h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Homing Method</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER8</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>23h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

6099h Homing Speed

Funktion

Gibt die Geschwindigkeiten für den Homing Mode (6098h) in *benutzerdefinierten Einheiten* an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6099h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Homing Speed</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Speed During Search For Switch</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000032h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Speed During Search For Zero</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000000Ah</td>
</tr>
</tbody>
</table>

Beschreibung

In Subindex 1 wird die Geschwindigkeit für die Suche nach dem Schalter angegeben.
In Subindex 2 wird die (niedrigere) Geschwindigkeit für die Suche nach der Referenzposition angegeben.

Hinweis

- Die Geschwindigkeit in Subindex 1 muss größer sein als die Geschwindigkeit in Subindex 2.

609Ah Homing Acceleration

Funktion

Gibt die Beschleunigungsrampe für den Homing Mode in benutzerdefinierten Einheiten an.
Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>609Ah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Homing Acceleration</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000001F4h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

60A2h Jerk Factor

Funktion

Dieses Objekt beinhaltet den Faktor, der zum Umrechnen von benutzerdefinierten Ruckeinheiten verwendet wird. Siehe Kapitel *Benutzerdefinierte Einheiten.*

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60A2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Jerk Factor</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B501312</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
</tbody>
</table>
Technisches Handbuch NP5-20 (EtherCAT)

11 Objektverzeichnis Beschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01ₜ</th>
<th>Name</th>
<th>Numerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001ₜ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02ₜ</th>
<th>Name</th>
<th>Divisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001ₜ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes haben folgende Funktionen:

- 01ₜ: Zähler des Faktors
- 02ₜ: Nenner des Faktors

60A4h Profile Jerk

Funktion

Im Falle einer Rampe mit begrenztem Ruck kann in diesem Objekt die Größe des Rucks eingetragen werden. Ein Eintrag mit dem Wert "0" bedeutet, dass der Ruck nicht begrenzt ist.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60A4ₜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Profile Jerk</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>04h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Begin Acceleration Jerk</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000003E8h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Begin Deceleration Jerk</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000003E8h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>03h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>End Acceleration Jerk</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000003E8h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>04h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>End Deceleration Jerk</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000003E8h</td>
</tr>
</tbody>
</table>
Beschreibung

- Subindex 01_{h} (Begin Acceleration Jerk): Anfangsruck bei Beschleunigung
- Subindex 02_{h} (Begin Deceleration Jerk): Anfangsruck bei Bremsung
- Subindex 03_{h} (End Acceleration Jerk): Abschlussruck bei Beschleunigung
- Subindex 04_{h} (End Deceleration Jerk): Abschlussruck bei Bremsung

60A8h SI Unit Position

Funktion

Dieses Objekt beinhaltet die Positionseinheit. Siehe Kapitel Benutzerdefinierte Einheiten.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60A8h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>SI Unit Position</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>FF410000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B501312</td>
</tr>
</tbody>
</table>

Beschreibung

Das Objekt 60A8h enthält:

- Bits 16 bis 23: die Positionseinheit (siehe Kapitel Einheiten)
- Bits 24 bis 31: den Exponenten einer Zehnerpotenz (siehe Kapitel Einheiten)

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Exponent einer Zehnerpotenz</td>
<td>Einheit</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>reserviert (00h)</td>
<td>reserviert (00h)</td>
<td></td>
</tr>
</tbody>
</table>

60A9h SI Unit Velocity

Funktion

Dieses Objekt beinhaltet die Geschwindigkeitseinheit. Siehe Kapitel Benutzerdefinierte Einheiten.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60A9h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>SI Unit Velocity</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
</tbody>
</table>
Technisches Handbuch NP5-20 (EtherCAT)

11 Objektverzeichnis Beschreibung

<table>
<thead>
<tr>
<th>Datentyp</th>
<th>UNSIGNED32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00B44700h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B501312</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

Das Objekt 60A9h enthält:

- Bits 8 bis 15: die Zeiteinheit (siehe Kapitel *Einheiten*)
- Bits 16 bis 23: die Positionseinheit (siehe Kapitel *Einheiten*)
- Bits 24 bis 31: den Exponenten einer Zehnerpotenz (siehe Kapitel *Einheiten*)

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Exponent einer Zehnerpotenz</td>
<td>Positionseinheit</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Zeiteinheit</td>
<td>reserviert (00h)</td>
<td></td>
</tr>
</tbody>
</table>

60B0h Position Offset

Funktion

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60B0h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Position Offset</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B505321</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

60B1h Velocity Offset

Funktion

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60B₁h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Velocity Offset</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B505321</td>
</tr>
</tbody>
</table>

60B₂h Torque Offset

Funktion

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60B₂h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Torque Offset</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER16</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0000₄h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B505321</td>
</tr>
</tbody>
</table>

60C₁h Interpolation Data Record

Funktion

Dieses Objekt enthält die Sollposition in benutzerdefinierten Einheiten für den Interpolationsalgorithmus für den Betriebsmodus Interpolated Position.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60C₁h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Interpolation Data Record</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
</tbody>
</table>
Technisches Handbuch NP5-20 (EtherCAT)

11 Objektverzeichnis Beschreibung

Datentyp | INTEGER32
Speicherbar | ja, Kategorie: Applikation
Zugriff | nur lesen
PDO-Mapping | nein
Zulässige Werte |
Vorgabewert |
Firmware Version | FIR-v1512
Änderungshistorie | Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".

Wertebeschreibung

| Subindex | 00h
| Name | Highest Sub-index Supported
| Datentyp | UNSIGNED8
| Zugriff | nur lesen
| PDO-Mapping | nein
| Zulässige Werte |
| Vorgabewert | 01h

| Subindex | 01h
| Name | 1st Set-point
| Datentyp | INTEGER32
| Zugriff | lesen/schreiben
| PDO-Mapping | RX-PDO
| Zulässige Werte |
| Vorgabewert | 00000000h

Beschreibung

Der Wert wird zum nächsten Synchronisationszeitpunkt übernommen.

60C2h Interpolation Time Period

Funktion

Dieses Objekt enthält die Interpolationszeit.

Objektbeschreibung

| Index | 60C2h
| Objektname | Interpolation Time Period
| Object Code | RECORD
| Datentyp | INTERPOLATION_TIME_PERIOD
| Speicherbar | ja, Kategorie: Applikation
| Zugriff | nur lesen

Version: 1.0.1 / FIR-v1748
PDO-Mapping: nein
Zulässige Werte
Vorgabewert
Firmware Version: FIR-v1426
Änderungshistorie

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>nein</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>02h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Interpolation Time Period Value</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>nein</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>01h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>02h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Interpolation Time Index</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>nein</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>FDh</td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes haben folgende Funktionen:

- 01h: Interpolationszeit.
- 02h: Zehnerexponent der Interpolationszeit: muss den Wert -3 halten (entspricht der Zeitbasis in Millisekunden).

Es gilt dabei: Zykluszeit = Wert des 60C2h:01h * 10 Wert des 60C2:02 Sekunden.
60C4h Interpolation Data Configuration

Funktion
Dieses Objekt bietet die maximale Puffergröße, gibt die konfigurierte Puffer-Organisation der interpolierten Daten an und bietet Objekte zur Definition der Größe des Datensatzes und zum Löschen des Puffers. Es wird zudem verwendet, um die Position weiterer Datenpunkte zu speichern.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60C4h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Interpolation Data Configuration</td>
</tr>
<tr>
<td>Object Code</td>
<td>RECORD</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTERPOLATION_DATA_CONFIGURATION</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1512</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>06h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>MaximumBufferSize</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>
Beschreibung

Der Wert des Subindex 01\textsubscript{h} enthält die maximale mögliche Anzahl der interpolierten Datensätze.

Der Wert des Subindex 02\textsubscript{h} enthält die momentane Anzahl der interpolierten Datensätze.
Wenn Subindex 03, "00", ist, bedeutet das eine FIFO-Puffer-Organisation, wenn es "01", ist, gibt es eine Ring-Puffer-Organisation an.

Der Wert des Subindex 04 ist ohne Einheit und gibt den nächsten freien Puffer-Einstiegspunkt an.

Der Wert des Subindex 05 wird in der Einheit "Byte" angegeben. Wenn der Wert "00", in den Subindex 06 geschrieben wird, löscht es die eingegangenen Daten im Puffer, deaktiviert den Zugriff und löscht alle Interpolierten Datensätze. Wenn der Wert "01", in den Subindex 06 geschrieben wird, aktiviert es den Zugriff auf den Eingangs-Puffer.

60C5h Max Acceleration

Funktion

Dieses Objekt enthält die maximal zulässige Beschleunigung für den Modus Profile Position und Profile Velocity.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60C5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Max Acceleration</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00001388h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

60C6h Max Deceleration

Funktion

Dieses Objekt enthält die maximal zulässige Verzögerung (Bremsrampe) für den Modus Profile Position und Profile Velocity.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60C6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Max Deceleration</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00001388h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>
60E4h Additional Position Actual Value

Funktion

Enthält die aktuelle Istposition aller vorhandenen Rückführungen in **benutzerdefinierten Einheiten**.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60E4(^{h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Additional Position Actual Value</td>
</tr>
<tr>
<td>Objekt Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B501312</td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00(^{h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>04(^{h})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01(^{h}) - 04(^{h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Additional Position Actual Value #1 - #4</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000(^{h})</td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes haben folgende Funktion:

- 00\(^{h}\): Wert="1" bis "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- \(n\)^{h}:
 - Subindex \(n\) enthält die aktuelle Istposition der entsprechenden Rückführung.
 - Subindex 01\(^{h}\) entspricht immer der ersten (und immer vorhandenen) Rückführung **Sensorless**.
60E5h Additional Velocity Actual Value

Funktion

Enthält die aktuelle Istgeschwindigkeit aller vorhandenen Rückführungen in *benutzerdefinierten Einheiten*.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60E5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Additional Velocity Actual Value</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B501312</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>04h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h - 04h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Additional Velocity Actual Value #1 - #4</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes haben folgende Funktion:

- **00h**: Wert="1" bis "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- **n**:
 - Subindex n enthält die aktuelle Istgeschwindigkeit der entsprechenden Rückführung.
 - Subindex 01h entspricht immer der ersten (und immer vorhandenen) Rückführung *Sensorless*.
60E6h Additional Position Encoder Resolution - Encoder Increments

Funktion

Mit diesem Objekt und mit 60EBh wird die Auflösung jeder vorhandenen Rückführung berechnet.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60E6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Additional Position Encoder Resolution - Encoder Increments</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Tuning</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1748-B538662</td>
</tr>
</tbody>
</table>

Wertebeschreibung

Subindex 00h

<table>
<thead>
<tr>
<th>Name</th>
<th>Highest Sub-index Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>04h</td>
</tr>
</tbody>
</table>

Subindex 01h

<table>
<thead>
<tr>
<th>Name</th>
<th>Additional Position Encoder Resolution - Encoder Increments Feedback Interface #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00320000h</td>
</tr>
</tbody>
</table>

Subindex 02h

<table>
<thead>
<tr>
<th>Name</th>
<th>Additional Position Encoder Resolution - Encoder Increments Feedback Interface #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
</tbody>
</table>

Version: 1.0.1 / FIR-v1748
Vorgabewert

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>03h</td>
<td>00000000C8h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subindex

<table>
<thead>
<tr>
<th>Subindex</th>
<th>Name</th>
<th>Datentyp</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
<th>Vorgabewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>04h</td>
<td>0000000001h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes haben folgende Funktion:

- **00h**: Wert="1" bis "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- **nh**: Subindex n enthält die Anzahl der Inkremente der entsprechenden Rückführung. Subindex 01h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Die Auflösung der Rückführung "n" berechnet sich wie folgt:

Position Encoder Resolution = Encoder Increments (60E6h:01h) / Motor Revolutions (60EBh:02h)

60E8h Additional Gear Ratio - Motor Shaft Revolutions

Funktion

In diesem Objekt und in 60EDh können Sie die Getriebeübersetzung jeder vorhandenen Rückführung einstellen.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>Objektnamen</th>
<th>Object Code</th>
<th>Datentyp</th>
<th>Speicherbar</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
<th>Zulässige Werte</th>
</tr>
</thead>
</table>
Vorgabewert
Firmware Version FIR-v1738-B501312
Änderungshistorie

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>04h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h - 04h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Additional Gear Ratio - Motor Shaft Revolutions Feedback Interface #1 - #4</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes haben folgende Funktion:

- \(\text{00}_h \): Wert = "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- \(\text{n}_h \): Subindex "n" enthält die Anzahl der Motorumdrehungen für die entsprechende Rückführung.

Subindex 01h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Die Getriebeübersetzung der Rückführung "n" berechnet sich wie folgt:

\[
\text{Gear Ratio} = \frac{\text{Motor Shaft Revolutions} \ (60E8_h:n_h)}{\text{Driving Shaft Revolutions} \ (60ED_h:n_h)}
\]

60E9h Additional Feed Constant - Feed

Funktion

In diesem Objekt und in \(\text{60EE}_h \), können Sie eine Vorschubkonstante für jede vorhandene Rückführung einstellen.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60E9h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Additional Feed Constant - Feed</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
</tbody>
</table>
PDO-Mapping RX-PDO
Zulässige Werte
Vorgabewert
Firmware Version FIR-v1738-B501312
Änderungshistorie

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>04h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h - 04h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Additional Feed Constant - Feed Feedback Interface #1 - #4</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes haben folgende Funktion:

- 00h: Wert = "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- nh: Subindex "n" enthält den Vorschub in benutzerdefinierten Einheiten für die entsprechende Rückführung.
 Subindex 01h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Die Vorschubkonstante der Rückführung "n" berechnet sich wie folgt:

Feed Constant = Feed (60E9h:nh) / Driving Shaft Revolutions (60EEh:nh)

60EBh Additional Position Encoder Resolution - Motor Revolutions

Funktion

Mit diesem Objekt und mit 60E6h wird die Auflösung jeder vorhandenen Rückführung berechnet.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60EBh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objekname</td>
<td>Additional Position Encoder Resolution - Motor Revolutions</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Tuning</td>
</tr>
</tbody>
</table>
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>04h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h - 04h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Additional Position Encoder Resolution - Motor Revolutions Feedback Interface #1 - #4</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes haben folgende Funktion:
- 00h: Wert="1" bis "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- nh:
 Subindex n enthält die Anzahl der Motorumdrehungen der entsprechenden Rückführung. Subindex 01h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Die Auflösung der Rückführung "n" berechnet sich wie folgt:
Position Encoder Resolution = Encoder Increments (60E6h:01h) / Motor Revolutions (60EBh:02h)

60EDh Additional Gear Ratio - Driving Shaft Revolutions

Funktion

In diesem Objekt und in 60EBh können Sie die Getriebeübersetzung jeder vorhandenen Rückführung einstellen.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60EDh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objekname</td>
<td>Additional Gear Ratio - Driving Shaft Revolutions</td>
</tr>
</tbody>
</table>
Object Code | ARRAY
Datentyp | UNSIGNED32
Speicherbar | ja, Kategorie: Applikation
Zugriff | nur lesen
PDO-Mapping | RX-PDO
Zulässige Werte |
Vorgabewert |
Firmware Version | FIR-v1738-B501312
Änderungshistorie |

Wertebeschreibung

| Subindex | 00h
Name | Highest Sub-index Supported
Datentyp | UNSIGNED8
Zugriff | nur lesen
PDO-Mapping | RX-PDO
Zulässige Werte |
Vorgabewert | 04h

| Subindex | 01h - 04h
Name | Additional Gear Ratio - Driving Shaft Revolutions Feedback Interface #1 - #4
Datentyp | UNSIGNED32
Zugriff | lesen/schreiben
PDO-Mapping | RX-PDO
Zulässige Werte |
Vorgabewert | 00000001h

Beschreibung

Die Subindizes haben folgende Funktion:

- **00h**: Wert= "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- **nh**: Subindex "n" enthält die Anzahl der Umdrehungen der Abtriebsachse für die entsprechende Rückführung. Subindex 01h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Die Getriebeübersetzung der Rückführung "n" berechnet sich wie folgt:

Gear Ratio = Motor Shaft Revolutions (60E8h:nh) / Driving Shaft Revolutions (60EDh:nh)

60EEh Additional Feed Constant - Driving Shaft Revolutions

Funktion

In diesem Objekt und in **60E9h** können Sie eine Vorschubkonstante für jede vorhandene Rückführung einstellen.
Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60EEh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Additional Feed Constant - Driving Shaft Revolutions</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B501312</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>04h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h - 04h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Additional Feed Constant - Driving Shaft Revolutions Feedback Interface #1 - #4</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000001h</td>
</tr>
</tbody>
</table>

Beschreibung

Die Subindizes haben folgende Funktion:

- 00h: Wert= "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- nh: Subindex "n" enthält die Anzahl der Umdrehungen der Abtriebsachse für die entsprechende Rückführung.
 Subindex 01h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Die Vorschubkonstante der Rückführung "n" berechnet sich wie folgt:

Feed Constant = Feed (60E9h:nh) / Driving Shaft Revolutions (60EEh:nh)
60F2h Positioning Option Code

Funktion

Das Objekt beschreibt das Positionierverhalten im **Profile Position** Modus.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60F2<sub>h</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Positioning Option Code</td>
</tr>
<tr>
<td>Datentyp</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0001<sub>h</sub></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1446</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".</td>
</tr>
</tbody>
</table>

Beschreibung

Derzeit werden nur nachfolgende Bits unterstützt:

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
</table>

REL. OPT. (Relative Option)

Diese Bits bestimmen das Verhalten bei relativer Drehbewegung im "Profile Position" Modus, sollte Bit 6 des Kontrollwortes 6040_h = "1" gesetzt sein.

<table>
<thead>
<tr>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Positionsbewegungen werden relativ zu der vorherigen (intern absoluten) Zielposition ausgeführt (jeweils relativ zu 0 falls keine Zielposition vorangegangen ist)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Positionsbewegungen werden relativ zum Vorgabewert (bzw. Ausgang) des Rampengenerators ausgeführt.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Positionsbewegungen werden relativ zur Istposition (Objekt 6064<sub>h</sub>) ausgeführt.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

RRO (Request-Response Option)

Diese Bits bestimmen das Verhalten bei der Übergabe des Controlwords 6040_h, Bit 5 ("new setpoint") - die Steuerung übernimmt in diesem Fall die Freigabe des Bits selbständig. Damit fällt die Notwendigkeit weg, das Bit anschließend extern wieder auf "0" zu setzen. Nachdem das Bit von der Steuerung aus auf den Wert "0" gesetzt wurde, wird auch das Bit 12 ("setpoint acknowledgement") im Statusword 6041_h auf den Wert "0" gesetzt.
Hinweis

Diese Optionen bringen die Steuerung dazu, das Objekt Controlword 6040\textsubscript{h} zu modifizieren.

<table>
<thead>
<tr>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Die Funktionalität ist wie unter Setzen von Fahrbefehlen beschrieben.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Die Steuerung wird das Bit "new setpoint" frei geben, sobald die momentane Zielfahrt ihr Ziel erreicht hat.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Die Steuerung wird das Bit "new setpoint" frei geben, sobald es der Steuerung möglich ist.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

RADO (Rotary Axis Direction Option)

Diese Bits bestimmen die Drehrichtung im "Profile Position" Modus.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Normale Positionierung ähnlich einer linearen Achse: Falls eines der "Position Range Limits" 607B\textsubscript{h}:01\textsubscript{h} und 02\textsubscript{h} erreicht oder überschritten wird, wird der Vorgabewert automatisch an das andere Ende der Limits übertragen. Nur mit dieser Bitkombination ist eine Bewegung größer als der Modulo-Wert möglich.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Positionierung nur in negativer Richtung: falls die Zielposition größer als die aktuelle Position ist fährt die Achse über das "Min Position Range Limit" aus Objekt 607D\textsubscript{h}:01\textsubscript{h} zu der Zielposition.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Positionierung nur in positiver Richtung: falls die Zielposition kleiner als die aktuelle Position ist fährt die Achse über das "Max Position Range Limit" aus Objekt 607D\textsubscript{h}:01\textsubscript{h} zu der Zielposition.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Positionierung mit dem kürzesten Weg zur Zielposition. Falls die Differenz zwischen aktueller Position und Zielposition in einem 360° System kleiner als 180° ist, fährt die Achse in positiver Richtung.</td>
</tr>
</tbody>
</table>

60F4h Following Error Actual Value

Funktion

Dieses Objekt enthält den aktuellen Schleppfehler in benutzerdefinierten Einheiten.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>Objektname</th>
<th>Object Code</th>
<th>Datentyp</th>
<th>Speicherbar</th>
<th>Zugriff</th>
<th>PDO-Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>60F4\textsubscript{h}</td>
<td>Following Error Actual Value</td>
<td>VARIABLE</td>
<td>INTEGER32</td>
<td>nein</td>
<td>nur lesen</td>
<td>TX-PDO</td>
</tr>
</tbody>
</table>
Zulässige Werte
Vorgabewert 00000000h
Firmware Version FIR-v1426
Änderungshistorie

60F8h Max Slippage

Funktion

Definiert den maximal erlaubten Schlupf Fehler in **benutzerdefinierten Einheiten** symmetrisch zur Sollgeschwindigkeit im Modus **Profile Velocity**.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60F8h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Max Slippage</td>
</tr>
<tr>
<td>Objekt Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000190h</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B501312</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

Weicht die Istgeschwindigkeit von der Sollgeschwindigkeit so stark ab, dass der Wert (Absolutbetrag) dieses Objekts überschritten wird, wird das Bit 13 im Objekt 6041h gesetzt. Die Abweichung muss länger andauern als die Zeit im Objekt 203Fh.

Wird der Wert des 60F8h auf "7FFFFFFF"h gesetzt, wird die Schlupf Fehler-Überwachung abgeschaltet.

Im Objekt 3700h kann eine Reaktion auf den Schlupf Fehler gesetzt werden. Wenn eine Reaktion definiert ist, wird auch ein Fehler im Objekt 1003h eingetragen.

60FAh Control Effort

Funktion

Dieses Objekt beinhaltet die Korrekturgeschwindigkeit in **benutzerdefinierten Einheiten**, die vom Positionsregler dem Geschwindigkeitsregler zugeführt wird.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60FAh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnamen</td>
<td>Control Effort</td>
</tr>
<tr>
<td>Objekt Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
</tbody>
</table>
**Technisches Handbuch NP5-20 (EtherCAT)
11 Objektverzeichnis Beschreibung**

Zugriff
nur lesen

PDO-Mapping
TX-PDO

Zulässige Werte
00000000

Vorgabewert
00000000

Firmware Version
FIR-v1748-B531667

Änderungshistorie

Beschreibung

Der Positionsregler bildet aus der Differenz zwischen Ist- und Sollposition eine Korrekturgeschwindigkeit (in benutzerdefinierten Einheiten), die an den Geschwindigkeitsregler weitergeleitet wird. Dieser Korrekturwert hängt vom Proportionalanteil \((3210_{h}\cdot01_{h})\) und Integralanteil \((3210_{h}\cdot02_{h})\) des Positionsreglers ab. Siehe auch Kapitel **Closed Loop**.

60FCh Position Demand Internal Value

Funktion

Gibt die aktuelle Sollposition in Inkrementen an.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60FC_{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektnname</td>
<td>Position Demand Internal Value</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1738-B501312</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

60FDh Digital Inputs

Funktion

Mit diesem Objekt können die Digitalen Eingänge des Motors gelesen werden.
Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60FDₜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Digital Inputs</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000ₜ</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN 8</td>
<td>IN 7</td>
<td>IN 6</td>
<td>IN 5</td>
<td>IN 4</td>
<td>IN 3</td>
<td>IN 2</td>
<td>IN 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS</td>
<td>PLS</td>
<td>NLS</td>
<td></td>
</tr>
</tbody>
</table>

NLS (Negative Limit Switch)

negativer Endschalter

PLS (Positive Limit Switch)

positiver Endschalter

HS (Home Switch)

Referenzschalter

IN n (Input n)

Eingang n - die Anzahl der verwendeten Bits ist abhängig von der jeweiligen Steuerung.

60FEₜh Digital Outputs

Funktion

Mit diesem Objekt können die Digitalausgänge des Motors geschrieben werden.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60FEₜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Digital Outputs</td>
</tr>
<tr>
<td>Object Code</td>
<td>ARRAY</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td>Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".</td>
</tr>
</tbody>
</table>
Wertebeschreibung

<table>
<thead>
<tr>
<th>Subindex</th>
<th>00h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Highest Sub-index Supported</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED8</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>01h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subindex</th>
<th>01h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Digital Outputs #1</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Zugriff</td>
<td>lesen/schreiben</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>RX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>00000000h</td>
</tr>
</tbody>
</table>

Beschreibung

Zum Schreiben der Ausgänge müssen noch die Einträge in Objekt 3250h, Subindex 02h bis 05h berücksichtigt werden.

<table>
<thead>
<tr>
<th>Bitposition</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-8</td>
<td>OUT4-OUT1</td>
</tr>
<tr>
<td>15-10</td>
<td>OUT4-OUT1</td>
</tr>
<tr>
<td>15</td>
<td>BRK</td>
</tr>
</tbody>
</table>

BRK (Brake)

Bit für den Bremsenausgang (falls der Controller diese Funktion unterstützt).

OUT n (Output No n)

Bit für den jeweiligen digitalen Ausgang, die genaue Zahl der Digitalausgänge ist abhängig von der Steuerung.

60FFh Target Velocity

Funktion

In dieses Objekt wird die Zielgeschwindigkeit für den Profile Velocity und Cyclic Synchronous Velocity Mode in benutzerdefinierten Einheiten eingetragen.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>60FFh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objetname</td>
<td>Target Velocity</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>INTEGER32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>ja, Kategorie: Applikation</td>
</tr>
</tbody>
</table>
6502h Supported Drive Modes

Funktion

Das Objekt beschreibt die unterstützten Betriebsmodi im Objekt 6060\text{h}.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6502h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Supported Drive Modes</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>UNSIGNED32</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>TX-PDO</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>000003EF\text{h}</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

Ein gesetztes Bit gibt an, ob der jeweilige Modus unterstützt wird. Ist der Wert des Bits "0", wird der Modus nicht unterstützt.

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

PP
Profile Position Modus

VL
Velocity Modus

PV
Profile Velocity Modus

TQ
Torque Modus
HM
Homing Modus

IP
Interpolated Position Modus

CSP
Cyclic Synchronous Position Modus

CSV
Cyclic Synchronous Velocity Modus

CST
Cyclic Synchronous Torque Modus

6503h Drive Catalogue Number

Funktion
Enthält den Gerätenamen als Zeichenkette.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6503h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Drive Catalogue Number</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>VISIBLE_STRING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td></td>
</tr>
<tr>
<td>Vorgabewert</td>
<td>0</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>

6505h Http Drive Catalogue Address

Funktion
Dieses Objekt enthält die Web-Adresse des Herstellers als Zeichenkette.

Objektbeschreibung

<table>
<thead>
<tr>
<th>Index</th>
<th>6505h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektname</td>
<td>Http Drive Catalogue Address</td>
</tr>
<tr>
<td>Object Code</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Datentyp</td>
<td>VISIBLE_STRING</td>
</tr>
<tr>
<td>Speicherbar</td>
<td>nein</td>
</tr>
<tr>
<td>Zugriff</td>
<td>nur lesen</td>
</tr>
<tr>
<td>PDO-Mapping</td>
<td>nein</td>
</tr>
<tr>
<td>Zulässige Werte</td>
<td>http://www.nanotec.de</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Vorgabewert</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>FIR-v1426</td>
</tr>
<tr>
<td>Änderungshistorie</td>
<td></td>
</tr>
</tbody>
</table>
12 Copyrights

12.1 Einführung

In der Nanotec Software sind Komponenten aus Produkten externer Software-Hersteller integriert. In diesem Kapitel finden Sie die Copyright-Informationen zu den verwendeten externen Software-Quellen.

12.2 AES

FIPS-197 compliant AES implementation
Based on XySSL: Copyright (C) 2006-2008 Christophe Devine
Copyright (C) 2009 Paul Bakker <polarssl_maintainer at polarssl dot org>
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
• Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution; or, the application vendor's website must provide a copy of this notice.
• Neither the names of PolarSSL or XySSL nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The AES block cipher was designed by Vincent Rijmen and Joan Daemen.

12.3 MD5

MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
License to copy and use this software is granted provided that it is identified as the "RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all material mentioning or referencing this software or this function.
License is also granted to make and use derivative works provided that such works are identified as "derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all material mentioning or referencing the derived work.
RSA Data Security, Inc. makes no representations concerning either the merchantability of this software or the suitability of this software for any particular purpose. It is provided "as is" without express or implied warranty of any kind.
These notices must be retained in any copies of any part of this documentation and/or software.
12.4 uIP

Copyright (c) 2005, Swedish Institute of Computer Science

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the Institute nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

12.5 DHCP

Copyright (c) 2005, Swedish Institute of Computer Science

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the Institute nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

12.6 CMSIS DSP Software Library

Copyright (C) 2010 ARM Limited. All rights reserved.

12.7 FatFs

FatFs - FAT file system module include file R0.08 (C)ChaN, 2010
FatFs module is a generic FAT file system module for small embedded systems.
This is a free software that opened for education, research and commercial
developments under license policy of following trems.
Copyright (C) 2010, ChaN, all right reserved.
The FatFs module is a free software and there is NO WARRANTY.
No restriction on use. You can use, modify and redistribute it for
personal, non-profit or commercial product UNDER YOUR RESPONSIBILITY.
Redistributions of source code must retain the above copyright notice.

12.8 Protothreads
Protothread class and macros for lightweight, stackless threads in C++.
This was "ported" to C++ from Adam Dunkels' protothreads C library at: http://www.sics.se/~adam/pt/
Originally ported for use by Hamilton Jet (www.hamiltonjet.co.nz) by Ben Hoyt, but stripped down for
public release. See his blog entry about it for more information: http://blog.micropledge.com/2008/07/
protothreads/
Original BSD-style license
Copyright (c) 2004-2005, Swedish Institute of Computer Science.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
 following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the Institute nor the names of its contributors may be used to endorse or
 promote products derived from this software without specific prior written permission.
This software is provided by the Institute and contributors "as is" and any express or implied
warranties, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose are disclaimed. In no event shall the Institute or contributors be liable for any
direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited
to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption)
however caused and on any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this software, even if advised of the
possibility of such damage.

12.9 lwIP
Copyright (c) 2001-2004 Swedish Institute of Computer Science.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
 following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products derived from this software
 without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This file is part of the lwIP TCP/IP stack.

Author: Adam Dunkels <adam@sics.se>