Command Reference

Description of the Nanotec firmware serial commands

For SMCI32 / SMCI47 / PD4-I / PD6-I drivers
Editorial/About this manual

© 2009 Nanotec® Electronic GmbH & Co. KG
Gewerbestraße 11
D-85652 Landsham / Pliening, Germany
Tel.: +49 (0)89-900 686-0
Fax: +49 (0)89-900 686-50
Internet: www.nanotec.com
All rights reserved!

MS Windows 98/NT/ME/2000/XP are registered trademarks of the Microsoft Corporation.

Target group

This technical manual is aimed at programmers who wish to program their own driver software for communication with drivers for the following Nanotec motors:
- Nanotec stepper motors SMCI32 and SMCI47
- Nanotec Plug & Drive motors PD4-I and PD6-I

About this manual

This technical manual must be read carefully before the Nanotec firmware command references are used for creating driver programs.

Nanotec® reserves the right to make technical alterations and further develop hardware and software in the interests of its customers to improve the function of this product without prior notice.

This manual has been written with due care. It is exclusively intended as a technical description of the Nanotec firmware command references. The warranty is limited to the repair or replacement of defective equipment of the Nanotec stepper motors, according to our general terms and conditions; liability for damage or errors resulting from the incorrect use of the command references for the programming of the user’s own motor drivers is excluded.

For criticisms, proposals and suggestions for improvement, please contact the above address or send an email to: info@nanotec.com

Version/Change overview

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.0</td>
<td>2008-08-08</td>
<td>Created</td>
</tr>
<tr>
<td>V2.0</td>
<td>2009-01-12</td>
<td>Revision (firmware version 04-12-2008)</td>
</tr>
</tbody>
</table>
Contents

Editorial/About this manual.. 2

Contents ... 3

1 General information .. 5
 1.1 Command structure ... 5
 1.2 Note on old command format ... 6
 1.3 Development support ... 6

2 Command overview ... 10

3 Read command ... 11

4 Records ... 12

5 General commands .. 13
 5.1 Setting the phase current ... 13
 5.2 Setting the phase current at a standstill .. 13
 5.3 Setting the step mode ... 14
 5.4 Setting the motor address ... 14
 5.5 Setting the motor mode ... 15
 5.6 Setting the limit switch behaviour .. 15
 5.7 Setting the limit switch type ... 17
 5.8 Setting the step angle ... 18
 5.9 Setting the error correction mode ... 18
 5.10 Setting the record for auto correction ... 19
 5.11 Setting the encoder direction .. 19
 5.12 Setting the settling time .. 20
 5.13 Setting the maximum encoder deviation .. 20
 5.14 Resetting the position error .. 21
 5.15 Reading out the error memory .. 21
 5.16 Reading out the encoder position .. 22
 5.17 Reading out the position ... 22
 5.18 Reading out the parameter .. 24
 5.19 Reading out the motor address .. 24
 5.20 Reading out the status ... 24
 5.21 Reading out the firmware version .. 24
 5.22 Reading out the firmware version (old) .. 25
 5.23 Masking and demasking the inputs .. 26
 5.24 Reversing the polarity of the inputs and outputs .. 26
 5.25 Switching the interrupts of the inputs on and off ... 26
 5.26 Setting the interrupts of the inputs to a rising flank .. 27
 5.27 Setting the interrupts of the inputs to a falling flank .. 28
 5.28 Setting the debounce time for the inputs .. 28

Issue: V 2.0
Contents

5.30 Setting the outputs ... 34
5.31 Setting automatic sending of the status .. 35
5.32 Starting the bootloader ... 35
5.33 Setting the reverse clearance ... 36

6 Record commands .. 37
6.1 Starting a record .. 37
6.2 Stopping a record .. 37
6.3 Loading a record from the EEPROM .. 37
6.4 Reading out the current record ... 39
6.5 Saving a record ... 40
6.6 Setting the positioning mode ... 41
6.7 Setting the travel distance .. 42
6.8 Setting the minimum frequency ... 42
6.9 Setting the maximum frequency ... 42
6.10 Setting the maximum frequency 2 .. 42
6.11 Setting the ramp ... 42
6.12 Setting the direction of rotation ... 42
6.13 Setting the change of direction ... 42
6.14 Setting the repetitions .. 42
6.15 Setting the record pause ... 42
6.16 Setting the continuation record ... 42

7 Mode-specific commands .. 42
7.1 Setting the dead range for the joystick mode .. 42
7.2 Setting the filter for the analogue and joystick modes ... 42
7.3 Setting the minimum voltage for the analogue mode ... 42
7.4 Setting the maximum voltage for the analogue mode .. 42
7.5 Setting the dead range for the joystick mode ... 42
7.6 Increasing the speed ... 42
7.7 Reducing the speed .. 42
7.8 Actuating the trigger .. 42

Index ... 42
1 General information

1.1 Command structure

Driver command structure

A command begins with start character '#' and ends with carriage return '\r'. All characters between the start and stop characters are ASCII characters (i.e., they are not control characters).

The start character is followed by the address of the motor as an ASCII decimal number. This value may range from 1 to 254. If '*' is sent instead of the number, all drivers connected to the bus are addressed.

This is followed by the actual command, which generally consists of an ASCII character and an optional ASCII number. This number must be written in decimal notation with a prefix of '+' or '-'. When the user sends a setting to the firmware, a '+' sign is not mandatory for positive numbers.

Note:
Some commands consist of multiple characters while others do not require a number as a parameter.

Driver response

If a driver recognizes a command as relevant to it, it confirms receipt by returning the command as an echo, but without the '#' start character.

If the driver receives an unknown command, it responds by returning the command followed by a question mark '?'. The response of the driver ends with carriage return '\r', like the command itself. The address is returned as '001' and not as '1'.

Examples

Set the travel distance of driver 1: "#1s1000\r" -> "001s1000\r"
Start a record: "#1A\r" -> "001A\r"
Invalid command: "#1/\r" -> "001/?\r"

RS485 interface specification

19200 baud
8 bit
1 start bit
1 stop bit
No parity bit
1.2 Note on old command format

Downward compatibility

To maintain downward compatibility with older Nanotec drivers, the old command format is still supported in the current version of the firmware (09-11-2007).

In the old command format, when numbers consist of multiple bytes, each byte is converted to a decimal number (0 to 255) and then sent (e.g. 255 => 255 ; 256 => 1000 ; 257 => 1001).

This type of conversion is applied in NONE of the commands described here. All commands described here use normal decimal numbers.

Description of the old command format

A description of the old command format is not included in this documentation. For the old format see the Plug and Drive manual, series PDx-I (version 2.1).

1.3 Development support

Overview

The following manual describes the commands for communication with Nanotec drivers via the serial or USB interface. This enables you to address our drivers with any programming language and from any suitable programmable device.

This section briefly discusses the following points:
• DLL library
• Application example of the DLL library
• Windows help on the DLL library

DLL library

If you work under Windows with a .NET-capable programming language (e.g. Visual Basic of version 8 or higher, C#, Delphi.NET), we offer you the convenience of being able to integrate our DLL library in your application. You can conveniently control the functions of the driver via a function call without having to concern yourself with communication details.

The Dynamic Link Library (DLL), included as a development aid, thus lets you quickly, comfortably and correctly integrate the supplied command record into your individual motor control application.
DLL library application

The EXCEL example shown here illustrates how our drivers can be addressed in a rapid and straightforward manner by means of the Visual Basic for Applications (VBA) scripting language and using the DLL.

Call button in an EXCEL worksheet

Associated VBA script
Windows help on the DLL library

The commands in the DLL library are individually documented in a Windows help file, where they are arranged by class.

Overview of the CommandsPD4I.NewSoftwareCommandsControl Classes

<table>
<thead>
<tr>
<th>CLASS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CommandChooseRecord</td>
<td></td>
</tr>
<tr>
<td>CommandGetDecayFrequency</td>
<td></td>
</tr>
<tr>
<td>CommandGetPosition</td>
<td></td>
</tr>
<tr>
<td>CommandGetStatus</td>
<td></td>
</tr>
<tr>
<td>CommandGetVersion</td>
<td></td>
</tr>
<tr>
<td>CommandIncreaseFrequency</td>
<td></td>
</tr>
</tbody>
</table>

Namespace hierarchy

Namespace: NanoProNG

CommandsPD4I.NewSoftwareCommandsControl

NanoLib

NanoLib.Controllers

NanoLib.OperatingModes

NanoLib.Operations

NanoProGUI

NanoProGUI.Controls

NanoProGUI.Forms
Overview of the CommandsControl Classes

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Index</th>
<th>Suchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NanoLib</td>
<td>NanoLib.Controllers</td>
<td>NanoLib.OperatingModes</td>
</tr>
<tr>
<td>NanoProNG</td>
<td>NanoProNG.BaseSetCommand</td>
<td></td>
</tr>
</tbody>
</table>

NanoProNG

CommandChooseRecord Class

- Stellt die Steuerungsfunktion für Auswahl eines Satzes bereit.
- For a list of all members of this `CommandChooseRecord` class, see:
 - `System.Object`
 - `BaseCommand`
 - `BaseSetCommand`

CommandChooseRecord Members

- `public class CommandChooseRecord Members`

Thread Safety

Public static (Shared in Visual Studio) members of this type are safe for multithreaded operations. Individual members are not guaranteed to be thread-safe.

Requirements

- **Namespace:** `CommandsPD4!.NewSoftwareCommands`
- **Assembly:** `CommandsPD4!.NewSoftwareCommands.dll`

See Also:

- `CommandChooseRecord Members`
- `CommandsPD4!.NewSoftwareCommands.Namespace`

Overview of the CommandChooseRecord Members

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Index</th>
<th>Suchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NanoLib</td>
<td>NanoLib.Controllers</td>
<td>NanoLib.OperatingModes</td>
</tr>
<tr>
<td>NanoProNG</td>
<td>NanoProNG.BaseSetCommand</td>
<td></td>
</tr>
</tbody>
</table>

NanoProNG

CommandChooseRecord Members

- `CommandChooseRecordMembers`
- `CommandChooseRecord Construct`
2 Command overview

Overview of the commands

Below you will find an overview of all of the commands (characters and parameters):

- ... Reducing the speed ...47
!... Setting the motor mode ..15
$... Reading out the status ...24
% ... Setting the dead range for the joystick mode47
-(Space) ... Reading out the firmware version (old)25
\ ... Setting the interrupts of the inputs to a falling flank30
/ ... Setting the interrupts of the inputs to a rising flank29
@A ... Starting the bootloader ...33
+ ... Increasing the speed ..47
= ... Setting the dead range for the joystick mode45
> ... Saving a record ..37
a ... Setting the step angle ..17
A ... Starting a record ..35
b ... Setting the ramp ..42
C ... Reading out the position ...22
c ... Resetting the position ..22
D ... Resetting the position error20
d ... Setting the direction of rotation42
E ... Reading out the error memory20
e ... Set the limit switch type ...16
f ... Setting the filter for the analogue and joystick modes45
F ... Setting the record for auto correction18
g ... Setting the step mode ..14
h ... Reversing the polarity of the inputs and outputs27
I ... Reading out the error memory21
i ... Setting the phase current ..13
J ... Setting automatic sending of the status33
K ... Setting the debounce time for the inputs31
k ... Switching the interrupts of the inputs on and off28
I (Pipe) ... Reading out the current record36
L ... Masking and demasking inputs25
I ... Setting the motor mode ..15
M ... Reading out the motor address23
m ... Setting the motor address14
N ... Setting the continuation record44
n ... Setting the maximum frequency41
 o ... Setting the maximum frequency41
O ... Setting the settling time ...19
p ... Setting the positioning mode38
P ... Setting the record pause ...44
q ... Setting the encoder direction18
Q ... Setting the minimum voltage for the analogue mode46
r ... Set the phase current at standstill13
R ... Setting the maximum voltage for the analogue mode46
s ... Setting the travel distance40
S ... Stopping a record ...35
T ... Actuating the trigger ...48
t ... Setting the change of direction43
U ... Setting the error correction mode17
u ... Setting the minimum frequency40
v ... Reading out the firmware version25
W ... Setting the repetitions ..43
X ... Setting the maximum encoder deviation19
y ... Loading a record from the EEPROM35
Y ... Setting the outputs ...32
Z ... Reading out the parameter ..23
z ... Set the reverse clearance ..34
Z + parameter ... Read command11
3 Read command

Function

A series of settings that can be set with a specific command can be read out with a corresponding read command.

Command

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Z’ + parameter ’</td>
<td>The read command is composed of the ‘Z’ character and the command for the corresponding parameter.</td>
</tr>
</tbody>
</table>

Example

Read out the travel distance:
"#1Zs\r" -> "001Zs1000\r"
4 Records

Saving travel distances

The firmware supports saving of travel distances in records. These data are saved in an EEPROM and are thus retained even if the device is switched off.

The EEPROM can accommodate 32 records with record numbers 1 to 32.

Saved settings per record

The following settings are saved in every record:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter</th>
<th>See section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position mode</td>
<td>'p'</td>
<td>6.6 Setting the positioning mode</td>
<td>41</td>
</tr>
<tr>
<td>Travel distance</td>
<td>'s'</td>
<td>6.7 Setting the travel distance</td>
<td>42</td>
</tr>
<tr>
<td>Initial step frequency</td>
<td>'u'</td>
<td>6.8 Setting the minimum frequency</td>
<td>42</td>
</tr>
<tr>
<td>Maximum step frequency</td>
<td>'o'</td>
<td>6.9 Setting the maximum frequency</td>
<td>42</td>
</tr>
<tr>
<td>Second maximum step frequency</td>
<td>'n'</td>
<td>6.10 Setting the maximum frequency 2</td>
<td>42</td>
</tr>
<tr>
<td>Acceleration and braking ramp</td>
<td>'b'</td>
<td>6.11 Setting the ramp</td>
<td>42</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>'d'</td>
<td>6.12 Setting the direction of rotation</td>
<td>42</td>
</tr>
<tr>
<td>Reversal in direction of rotation for repeat records</td>
<td>'t'</td>
<td>6.13 Setting the change of direction</td>
<td>42</td>
</tr>
<tr>
<td>Repetitions</td>
<td>'w'</td>
<td>6.14 Setting the repetitions</td>
<td>42</td>
</tr>
<tr>
<td>Pause between repetitions and continuation records</td>
<td>'P'</td>
<td>6.15 Setting the record pause</td>
<td>42</td>
</tr>
<tr>
<td>Record number of continuation record</td>
<td>'N'</td>
<td>6.16 Setting the continuation record</td>
<td>42</td>
</tr>
</tbody>
</table>
5 General commands

5.1 Setting the phase current

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'i'</td>
<td>Integer, allowed values between 0 and 150</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Sets the phase current in percent. Values above 100 should be avoided.

Reading out

Command 'Zi' is used to read out the current valid value.

5.2 Setting the phase current at a standstill

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'r'</td>
<td>Integer, allowed values between 0 and 150</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Sets the current of the current reduction in percent. Like the phase current, this current is relative to the end value and not relative to the phase current. Values above 100 should be avoided.

Reading out

Command 'Zr' is used to read out the current valid value.
5.3 Setting the step mode

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘g’</td>
<td>Integer, allowed values: 1, 2, 4, 5, 8, 10, 16, 32, 64 and 255</td>
</tr>
</tbody>
</table>

Firmware response
Confirms the command through an echo (including invalid values). Invalid values are ignored.

Description
Sets the step mode. The passed number equals the number of microsteps per full step, with the exception of the value 255, which selects the adaptive step mode.

Reading out
Command ‘Zg’ is used to read out the current valid value.

5.4 Setting the motor address

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘m’</td>
<td>Integer, allowed values between 1 and 254</td>
</tr>
</tbody>
</table>

Firmware response
Confirms the command through an echo (including invalid values). Invalid values are ignored.

Description
Sets the motor address. Ensure that the newly set address is not already occupied by another motor as this would make communication impossible.
Addresses 0 and 255 are reserved for faults of the EEPROM.

Reading out
Command ‘Zm’ is used to read out the current address. See also command 5.20 Reading out the motor address ‘M’.
5.5 Setting the motor mode

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'!'</td>
<td>Integer, allowed values between 1 and 5</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Sets the motor mode. Six different modes are available:
1: Positioning mode
2: Speed mode
3: Flag positioning mode
4: Clock directional mode
5: Analogue mode
6: Joystick mode

Reading out

Command 'Z!' is used to read out the current valid value.

5.6 Setting the limit switch behaviour

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'l'</td>
<td>Integer, bit mask; the values are provided in the description</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Sets the limit switch behaviour. The integer parameter is interpreted as a bit mask. The bit mask has 16 bits.
"Free travel" means that when the switch is reached, the driver travels away from the switch at the set lower speed.
"Stop" means that when the switch is reached, the driver stops immediately. The switch remains pressed.

Behaviour of the internal limit switch during a reference run:
Bit0: Free travel forwards
Bit1: Free travel backwards
Exactly one of the two bits must be set.
Behaviour of the internal limit switch during a normal run:

Bit2: Free travel forwards
Bit3: Free travel backwards
Bit4: Stop
Bit5: Disable

Exactly one of the four bits must be set.
This setting is useful when the motor is not allowed to turn more than one revolution.

Behaviour of the external limit switch during a reference run:

Bit9: Free travel forwards
Bit10: Free travel backwards

Exactly one of the two bits must be set.

Behaviour of the external limit switch during a normal run:

Bit11: Free travel forwards
Bit12: Free travel backwards
Bit13: Stop
Bit14: Disable

Exactly one of the four bits must be set.
With this setting, the travel distance of the motor can be precisely limited by a limit switch.

Reading out

Command 'ZI' is used to read out the current valid value.

5.7 Setting the limit switch type

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'e'</td>
<td>Integer, allowed values are 0 and 1</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Specifies the type of limit switch:

'0' means opener
'1' means closer

This parameter is used to indicate to the firmware in what state it sees the external limit switch as activated. The limit switch is connected between the supply voltage (to +5V in SMCIxx) and input 6.

Therefore, 'opener' means that under normal conditions, a high level is applied at the input since the switch is normally closed. When the switch is activated, it opens this contact ("opener") and there is no voltage at the input.

Reading out

Command 'Ze' is used to read out the current valid value.
5.8 Setting the step angle

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘a’</td>
<td>Integer, allowed values are 9 and 18</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

To convert the encoder position to the rotor position, the firmware requires information on the step angle of the motor. A value of 9 must be set for 0.9° motors, and 18 must be set for 1.8° motors. Other values are not supported.

Reading out

Command ‘Za’ is used to read out the current setting of the value.

5.9 Setting the error correction mode

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘U’</td>
<td>Integer, allowed values are 0, 1 and 2</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Sets the error correction mode.
Parameter 0: Off
Parameter 1: Correction after travel
Parameter 2: Correction during travel (not implemented)
In a motor without an encoder, this value must be explicitly set to 0; otherwise, it will continuously attempt to make a correction because it assumes that there are step losses.

Reading out

Command ‘ZU’+Index is used to read out the error number of the respective error memory.
5.10 Setting the record for auto correction

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘F’</td>
<td>Integer, allowed values between 1 and 32</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Sets the record used for the correction run.
See command 5.9 Setting the error correction mode ‘U’.

Reading out

Command ‘ZF’ is used to read out the current valid value.

5.11 Setting the encoder direction

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘q’</td>
<td>Integer, allowed values are 0 and 1</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

If the parameter is set to '1', the direction of the rotary encoder is reversed.

Reading out

Command ‘Zq’ is used to read out the current valid value.
5.12 Setting the settling time

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘O’</td>
<td>Integer, allowed values between 0 and 255</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Defines the settling time in 10ms steps between the end of the run and when the position is checked by the encoder.
This parameter is only valid for the positional check after a run.
See command 5.9 Setting the error correction mode ‘U’.
Between repetitions or continuation records, this position is only checked if the pause time (see command 6.15 Setting the record pause ‘P’) is longer than the settling time.
After a record, the settling time is awaited before the motor indicates that it is ready again.

Reading out

Command ‘ZO’ is used to read out the current valid value.

5.13 Setting the maximum encoder deviation

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘X’</td>
<td>Integer, allowed values between 0 and 100</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Specifies the maximum deviation in steps between the setpoint position and the encoder position.
In step modes greater than 1/1 step in 10° and 1/1 step in 5° motors, this value must be greater than 0 since, even then, the encoder has a lower resolution than the microsteps of the motor.

Reading out

Command ‘ZX’ is used to read out the current valid value.
5.14 Resetting the position error

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘D’</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo.

Description

 Resets an error in the speed monitoring and sets the current position to the position indicated by the encoder.

5.15 Reading out the error memory

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘E’</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

Returns the index of the error memory with the last error that occurred.

Description

The firmware contains 32 error memory locations.

The last 32 errors are stored. When memory location 32 is reached, the next error is again stored at memory position 1. In this case, memory position 2 contains the oldest error code that can be read out.

This command is used to read out the index of the memory space with the last error that occurred and the corresponding error code.

Reading out

Command ‘ZE’+Index is used to read out the error number of the respective error memory.

Error codes

```c
 //! Error codes for error byte in EEPROM
#define ERROR_LOWVOLTAGE 0x01
#define ERROR_TEMP 0x02
#define ERROR_TMC 0x04
#define ERROR_EE 0x08
#define ERROR_QEI 0x10
#define ERROR_INTERNAL 0x20
```
Meaning

<table>
<thead>
<tr>
<th>Error</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOWVOLTAGE</td>
<td>Undervoltage</td>
</tr>
<tr>
<td>TMC</td>
<td>Driver module returned one error.</td>
</tr>
<tr>
<td>EE</td>
<td>Useless data in EPROM, e.g. step resolution is 25th of one step.</td>
</tr>
<tr>
<td>QEI</td>
<td>Position error</td>
</tr>
<tr>
<td>INTERNAL</td>
<td>Internal error (equivalent to the Windows blue screen).</td>
</tr>
</tbody>
</table>

Driver status

The status of the driver can be read out with the 5.21 Reading out the status '$' command.

5.16 Reading out the encoder position

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'I'</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

Returns the current position of the motor according to the encoder.

Description

In motors with an encoder, this command returns the current position of the motor in motor steps as indicated by the encoder. Provided that the motor has not lost any steps, the values of the 5.17 Reading out the position 'C' command and the 6.4 Reading out the current record ' | ' (pipe) command are the same.

However, it should be noted that the encoder has a resolution that is too low for step modes greater than 1/1 in 10° motors and 1/1 in 5° motors, and differences will therefore still arise between the two values specified above.
5.17 Reading out the position

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘C’</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

Returns the current position.

Description

Returns the current position of the motor in steps of the set step mode. This position is relative to the position of the last reference run.

If the motor is equipped with an angle transmitter, this value should be very close to the value of command "I" with a very low tolerance.

The tolerance depends on the step mode and the motor type (0.9° or 1.8°) since the angle transmitter has a lower resolution than the motor in the microstep mode.

The value range is that of a 32-bit signed integer (value range $\pm 2^{31}$).

5.18 Resetting the position

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘c’</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo.

Description

Resets the position of the motor to 0.

The current position of the motor is then used as the reference position.
5.19 Reading out the parameter

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Z’</td>
<td>Readable command and optional associated record number</td>
</tr>
</tbody>
</table>

Firmware response

Returns the required parameter.

Description

This is used to read out the current settings of the values of certain commands. For example, the travel distance is read out with ‘Zs’, to which the firmware responds with ‘Zs1000’.

If the parameter of a specific record is to be read out, the number of the record must be placed in front of the respective command.

Example: ‘Z5s’ -> ‘Z5s2000’

A list of record commands can be found under “4 Records”

5.20 Reading out the motor address

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘M’</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

Returns the motor address.

Description

Returns the serial address. In particular, this is useful in connection with the “*” addressing type if the motor address is not known.
5.21 Reading out the status

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>$</code></td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

Returns the status of the firmware as a bit mask.

Description

The bit mask has 8 bits.

Bit 0: 1: Driver ready

Bit 1: 1: Zero position reached

Bit 2: 1: Position error

Bit 3: 1: Input 1 is set while the driver is ready again. This occurs when the driver is started via input 1 and the driver is ready before the input has been reset.

Bits 4 through 6 specify the current mode as an integer:

0: Unused

1: Driver in positioning mode

2: Driver in speed mode

3: Driver in flag positioning mode

4: Driver in clock direction mode

5: Analogue mode

6: Joystick mode

7: Unused

Bit 7 is unassigned
5.22 Reading out the firmware version

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>’v’</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

Returns the version string of the firmware.

Description

The return sting consists of several blocks:

’v’ echo of the command

’ ’ separator (space)

’_’ separator

Communication: ‘USB’ or ‘RS485’

’_’ separator

Release date: d-mm-yyyy, e.g. 26-09-2007

Example of a complete response

"001v PD4_RS485_26-09-2007\r"

5.23 Reading out the firmware version (old)

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>’ ’ (space)</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

String containing firmware version (const, since new command ’v’ has assumed this function).

Description

Required for bootloader; otherwise, this command serves no purpose.

5.24 Masking and demasking the inputs

Validity

Valid for firmware version 09-11-2007 and higher.

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>’L’</td>
<td>Bit mask as integer</td>
</tr>
</tbody>
</table>
Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored (i.e. the entire mask is discarded).

Description

This bit mask has 32 bits.
Sets a bit mask that permits the user to use the inputs and outputs. If the bit of the corresponding I/Os is set to '1', the firmware uses these I/Os. If it is set to '0', the I/Os are available to the user. See also command 5.30 Setting the outputs 'Y'.
The bit assignment is shown below:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit0: Input 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bit1: Input 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bit2: Input 3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Bit3: Input 4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bit4: Input 5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bit5: Input 6</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Bit16: Output 1</td>
<td>65536</td>
<td></td>
</tr>
<tr>
<td>Bit17: Output 2</td>
<td>131072</td>
<td></td>
</tr>
</tbody>
</table>

All other bits are '0'

All on 1: 196671

Attention:
If a bit is not addressed when the mask is set, it is automatically set to '0', regardless of the state. All bits must be set at once.
If invalid bit masks are used, these are discarded, even if the firmware confirms them correctly.

Reading out

Command 'ZL' is used to read out the current setting of the mask.

Examples

All bits should be set to '0'.
Send: #1L0\r
Read: 1L0\r

Bit3 and Bit5 should be set to '1':
Send: #1L20\r
Read: 1L20\r

'20' because Bit3 is addressed with the value of 4 and Bit5 with the value of 16, i.e. 4 + 16 = 20.
5.25 Reversing the polarity of the inputs and outputs

Validity
Valid for firmware version 30-01-2008 and higher.

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘h’</td>
<td>Bit mask as integer</td>
</tr>
</tbody>
</table>

Firmware response
Confirms the command through an echo (including invalid values).
Invalid values are ignored, i.e. the entire mask is discarded.

Description
Sets a bit mask with which the user can reverse the polarity of the inputs and outputs.
If the bit of the corresponding I/O is set to ‘1’, there is no polarity reversal. If it is set to ‘0’, the polarity of the I/O is inverted.
The bit assignment is shown below:

Bit0: Input 1
Bit1: Input 2
Bit2: Input 3
Bit3: Input 4
Bit4: Input 5
Bit5: Input 6
Bit16: Output 1
Bit17: Output 2
All other bits are ‘0’.
If invalid bit masks are used, these are discarded, even if the firmware confirms them correctly.

Reading out
Command ‘Zh’ is used to read out the current setting of the mask.
5.26 Switching the interrupts of the inputs on and off

Validity
Valid for firmware version 30-01-2008 and higher.

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'k'</td>
<td>Bit mask as integer</td>
</tr>
</tbody>
</table>

Firmware response
Confirms the command through an echo (including invalid values).
Invalid values are ignored, i.e. the entire mask is discarded.

Description
Sets a bit mask with which the user can switch the interrupts of the inputs on and off.
If the bit of the corresponding I/O is set to '1', the interrupt is switched on. Unless a different setting is made, an interrupt is initiated with every signal change (see also command 5.27 Setting the interrupts of the inputs to a rising flank '/' and 5.28 Setting the interrupts of the inputs to a falling flank '\'). The only exception is input 6, which responds either to a rising or falling flank. Unless a different setting is made, it only responds to the rising flank.
The bit assignment is shown below:

Bit0: Input 1
Bit1: Input 2
Bit2: Input 3
Bit3: Input 4
Bit4: Input 5
Bit5: Input 6
All other bits are '0'.

If invalid bit masks are used, these are discarded, even if the firmware confirms them correctly.

Reading out
Command 'Zk' is used to read out the current setting of the mask.
5.27 Setting the interrupts of the inputs to a rising flank

Validity
Valid for firmware version 30-01-2008 and higher.

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/</code></td>
<td>Bit mask as integer</td>
</tr>
</tbody>
</table>

Firmware response
Confirms the command through an echo (including invalid values).
Invalid values are ignored, i.e. the entire mask is discarded.

Description
Sets a bit mask with which the user can switch the interrupts of the inputs to rising flanks.
If the bit of the corresponding I/O is set to ‘1’, the interrupt responds to a rising flank. If the interrupt of the corresponding I/O has not yet been switched on (see command 5.26 Switching the interrupts of the inputs on and off 'k'), it is activated automatically.
The bit assignment is shown below:
Bit0: Input 1
Bit1: Input 2
Bit2: Input 3
Bit3: Input 4
Bit4: Input 5
Bit5: Input 6
All other bits are ‘0’.
If invalid bit masks are used, these are discarded, even if the firmware confirms them correctly.

Reading out
Command ‘Z/’ is used to read out the current setting of the mask.
5.28 Setting the interrupts of the inputs to a falling flank

Validity

Valid for firmware version 30-01-2008 and higher.

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'"'</td>
<td>Bit mask as integer</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored, i.e. the entire mask is discarded.

Description

Sets a bit mask with which the user can switch the interrupts of the inputs to falling flanks.

If the bit of the corresponding I/O is set to ‘1’, the interrupt responds to a falling flank. If the interrupt of the corresponding I/O has not yet been switched on (see command 5.26 Switching the interrupts of the inputs on and off ‘k’), it is activated automatically.

The bit assignment is shown below:

Bit0: Input 1
Bit1: Input 2
Bit2: Input 3
Bit3: Input 4
Bit4: Input 5
Bit5: Input 6

All other bits are ‘0’.

If invalid bit masks are used, these are discarded, even if the firmware confirms them correctly.

Reading out

Command ‘Z’ is used to read out the current setting of the mask.
5.29 Setting the debounce time for the inputs

Validity

Valid for firmware version 30-01-2008 and higher.

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘K’</td>
<td>Integer, allowed values are from 0 to 10</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Sets the time in ms that needs to elapse after a signal change at an input until the signal has stabilized (so-called “debouncing”).

Reading out

Command ‘ZK’ is used to read out the current setting of the value.
5.30 Setting the outputs

Validity
Valid for firmware version 09-11-2007 and higher.

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Y'</td>
<td>Bit mask as integer</td>
</tr>
</tbody>
</table>

Firmware response
Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description
This bit mask has 32 bits.
Sets the outputs of the firmware, provided that these have been masked for free use using command 5.24 Masking and demasking the inputs 'L'.
Output 1 corresponds to bit 16 and output 2 to bit 17.

Reading out
Command 'ZY' is used to read out the current setting of the value.
The status of the inputs is displayed as well.
Bit0: Input 1
Bit1: Input 2
Bit2: Input 3
Bit3: Input 4
Bit4: Input 5
Bit5: Input 6
Bit6: ‘0’ when the encoder is at the index line, otherwise ‘1’
Bit 16: Output 1 (as set by the user, even if the firmware is currently using it)
Bit 17: Output 2 (as set by the user, even if the firmware is currently using it)
All other bits are ‘0’.
5.31 Setting automatic sending of the status

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘J’</td>
<td>Integer, allowed values are 0 and 1</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values). Invalid values are ignored.

Description

If this parameter is set to ‘1’, the firmware independently sends the status after the end of a run. See command 5.21 Reading out the status ‘$’, with the difference that a lower case ‘j’ is sent instead of the ‘$’.

Reading out

Command ‘ZJ’ is used to read out the current valid value.

5.32 Starting the bootloader

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘@A’</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

No response, bootloader responds with ‘@OK’

Description

The command instructs the firmware to launch the bootloader. The firmware itself does not respond to the command. The bootloader responds with ‘@OK’.

The bootloader itself also requires this command to prevent it from automatically terminating itself after one half second. Therefore, this command needs to be sent repeatedly until the bootloader responds with ‘@OK’. The bootloader uses the same addressing scheme as the firmware itself.
5.33 Setting the reverse clearance

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘z’</td>
<td>Integer, allowed values between 0 and 9999</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Specifies the reverse clearance in steps.
This setting is used to compensate for the clearance of downstream gears when there is a change in direction.
When there is a change in direction, the motor takes the number of steps set in the parameter before it begins incrementing the position.

Reading out

Command ‘Zz’ is used to read out the current valid value.
6 Record commands

6.1 Starting a record

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'A'</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo.

Description

Starts the run with the current parameter settings.

6.2 Stopping a record

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'S'</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo.

Description

Stops the current run.

In the speed, analogue and joystick modes, this is the only method of returning the motor to the ready state.

The motor is brought to an immediate halt without ramps. This may result in step loss at high speeds.

In the three modes named above, the speed should therefore be reduced prior to the stop command.

6.3 Loading a record from the EEPROM

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'y'</td>
<td>Integer from 1 to 32</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).

Invalid values are ignored.

Description

Loads the record data of the record passed in the parameter from the EEPROM.

See also command 6.5 Saving a record '>'.
6.4 Reading out the current record

Validity
 Implemented beginning with the next firmware version.

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'</td>
<td>' (pipe)</td>
</tr>
</tbody>
</table>

Firmware response
 Confirms the command through an echo when the parameter is set to ‘1’. This is the only response.

Description
 If the parameter is set to ‘0’, the firmware does not respond at all to commands, although it continues to execute them as before. This can be used to quickly send settings to the firmware without awaiting a response.

Reading out
 With command ‘Z|’, the firmware sends all settings of the loaded record together.
 With ‘Z5|’, the data of set 5 in the EEPROM are sent.
 The format corresponds to that of the respective commands.
 It should be noted that the '|' character is not sent with the response. See the following examples.

Examples
 '1Z|r'
 -> 'Zp+1s+1u+400o+860n+1000b+55800d+1t+0W+1P+0N+0
'
 '1Z5|r'
 -> 'Z5p+1s+400u+4000o+1000n+1000b+2364d+0t+0W+1P+0N+0
’
6.5 Saving a record

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘>’</td>
<td>Integer, allowed values between 1 and 32</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

This command is used to save the currently set commands (in RAM) in a record in the EEPROM. The parameter is the record number in which the data are saved.

This command should not be called up during a run because the current values change during subsequent runs.

A record contains the following settings and commands:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter</th>
<th>See section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position mode</td>
<td>'p'</td>
<td>6.6 Setting the positioning mode</td>
<td>41</td>
</tr>
<tr>
<td>Travel distance</td>
<td>'s'</td>
<td>6.7 Setting the travel distance</td>
<td>42</td>
</tr>
<tr>
<td>Initial step frequency</td>
<td>'u'</td>
<td>6.8 Setting the minimum frequency</td>
<td>42</td>
</tr>
<tr>
<td>Maximum step frequency</td>
<td>'o'</td>
<td>6.9 Setting the maximum frequency</td>
<td>42</td>
</tr>
<tr>
<td>Second maximum step frequency</td>
<td>'n'</td>
<td>6.10 Setting the maximum frequency 2</td>
<td>42</td>
</tr>
<tr>
<td>Acceleration and braking ramp</td>
<td>'b'</td>
<td>6.11 Setting the ramp</td>
<td>42</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>'d'</td>
<td>6.12 Setting the direction of rotation</td>
<td>42</td>
</tr>
<tr>
<td>Reversal in direction of rotation for repeat records</td>
<td>'t'</td>
<td>6.13 Setting the change of direction</td>
<td>42</td>
</tr>
<tr>
<td>Repetitions</td>
<td>'w'</td>
<td>6.14 Setting the repetitions</td>
<td>42</td>
</tr>
<tr>
<td>Pause between repetitions and continuation records</td>
<td>'P'</td>
<td>6.15 Setting the record pause</td>
<td>42</td>
</tr>
<tr>
<td>Record number of continuation record</td>
<td>'N'</td>
<td>6.16 Setting the continuation record</td>
<td>42</td>
</tr>
</tbody>
</table>
6.6 Setting the positioning mode

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'p'</td>
<td>Integer, allowed values between 1 and 4 (depending on the motor mode)</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

In each of the 6 different motor modes, this command has a different meaning:

<table>
<thead>
<tr>
<th>Positioning mode (≠1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p=1</td>
</tr>
<tr>
<td>Relative positioning;</td>
</tr>
<tr>
<td>Command 6.7 Setting the travel distance 's' defines the travel distance relative to the current position.</td>
</tr>
<tr>
<td>Command 6.12 Setting the direction of rotation 'd' defines the direction.</td>
</tr>
<tr>
<td>Parameter 6.7 Setting the travel distance 's' must be positive.</td>
</tr>
<tr>
<td>p=2</td>
</tr>
<tr>
<td>Absolute positioning;</td>
</tr>
<tr>
<td>Command 6.7 Setting the travel distance 's' defines the target position relative to the reference position.</td>
</tr>
<tr>
<td>Command 6.12 Setting the direction of rotation 'd' is ignored.</td>
</tr>
<tr>
<td>p=3</td>
</tr>
<tr>
<td>Internal reference run;</td>
</tr>
<tr>
<td>The motor runs at the lowest speed in the direction set in command 6.12 Setting the direction of rotation 'd' until it reaches the index line of the encoder. Then the motor runs a fixed number of steps to leave the index line again. For the direction of free travel, see command 5.6 Setting the limit switch behaviour 'l'. This mode is only useful for motors with integrated and connected encoders.</td>
</tr>
<tr>
<td>p=4</td>
</tr>
<tr>
<td>External reference run;</td>
</tr>
<tr>
<td>The motor runs at the highest speed in the direction set in command 6.12 Setting the direction of rotation 'd' until it reaches the limit switch. Then a free run is performed, depending on the setting. See command 5.6 Setting the limit switch behaviour 'l'.</td>
</tr>
</tbody>
</table>

Speed mode (≠2))

<table>
<thead>
<tr>
<th>Speed mode (≠2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p=1</td>
</tr>
<tr>
<td>Speed mode;</td>
</tr>
<tr>
<td>when the motor is started, the motor increases in speed to the maximum speed with the set ramp. Changes in the speed or direction of rotation are performed immediately with the set ramp without having to stop the motor first.</td>
</tr>
<tr>
<td>p=2</td>
</tr>
<tr>
<td>Not assigned</td>
</tr>
<tr>
<td>p=3</td>
</tr>
<tr>
<td>Internal reference run;</td>
</tr>
<tr>
<td>see position mode</td>
</tr>
<tr>
<td>p=4</td>
</tr>
<tr>
<td>External reference run;</td>
</tr>
<tr>
<td>see position mode</td>
</tr>
</tbody>
</table>
Flag positioning mode (p=3)

p=1	Flag positioning mode; after starting, the motor runs up to the maximum speed. After the trigger event occurs (command 7.8 Actuating the trigger ‘T’ or trigger input), the motor moves the set travel distance (command 6.7 Setting the travel distance ‘s’) and, for this purpose, changes its speed to the maximum speed 2 (command 6.10 Setting the maximum frequency 2 ‘n’).
p=2	Not assigned
p=3	Internal reference run; see position mode
p=4	External reference run; see position mode

Clock direction mode (p=4)

p=1	Auto mode; the motor takes 10 single steps and then increases its speed to the value set for the maximum speed until the enable is disabled again.
p=2	Not assigned
p=3	Internal reference run; see position mode
p=4	External reference run; see position mode

Analogue mode (p=5)

Not applicable

Joystick mode (p=6)

Not applicable

Reading out

Command ‘Z!’ is used to read out the current valid value.
6.7 Setting the travel distance

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘s’</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo.

Description

This command specifies the travel distance in (micro-)steps. Only positive values are allowed for the relative positioning. The direction is set with command 6.12 Setting the direction of rotation ‘d’.

For absolute positioning, this command specifies the target position. Negative values are allowed in this case. The direction of rotation from command 6.12 Setting the direction of rotation ‘d’ is ignored since it can be derived from the current position and the target position.

The value range is that of a 32-bit signed integer (value range $\pm 2^{31}$).

In the adaptive mode, this parameter refers to full steps.

Reading out

Command ‘Zs’ is used to read out the current valid value.

6.8 Setting the minimum frequency

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘u’</td>
<td>Integer, allowed values between 60 and 25000</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).

Invalid values are ignored.

Description

Specifies the minimum speed in Hertz (steps per second).

When a record starts, the motor begins rotating with the minimum speed. It then accelerates with the set ramp (command 6.11 Setting the ramp ‘b’) to the maximum speed (command 6.9 Setting the maximum frequency ‘o’).

Reading out

Command ‘Zu’ is used to read out the current valid value.
6.9 Setting the maximum frequency

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'o'</td>
<td>Integer, allowed values between 60 and 25000</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Specifies the maximum speed in Hertz (steps per second).
The maximum speed is reached after first passing through the acceleration ramp.

Reading out

Command 'Zo' is used to read out the current valid value.

6.10 Setting the maximum frequency 2

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'n'</td>
<td>Integer, allowed values between 60 and 25000</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Specifies the maximum speed 2 in Hertz (steps per second).
The maximum speed 2 is reached after first passing through the acceleration ramp.
This value is only applied in the flag positioning mode. See command 6.6 Setting the positioning mode 'p'.

Reading out

Command 'Zn' is used to read out the current valid value.
6.11 Setting the ramp

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'b'</td>
<td>Integer, allowed values between 1 and 65535</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Specifies the acceleration ramp (and at this time also the brake ramp).
To convert the parameter to acceleration in Hz/ms, the following formula is used:
Acceleration in Hz/ms = ((3000.0 / sqrt((float)<parameter>)) - 11.7).

Reading out

Command 'Zb' is used to read out the current valid value.

6.12 Setting the direction of rotation

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'d'</td>
<td>Integer, allowed values are 0 and 1</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Sets the direction of rotation:
0: Left
1: Right

Reading out

Command 'Zd' is used to read out the current valid value.
6.13 Setting the change of direction

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'t'</td>
<td>Integer, allowed values are 0 and 1</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

With repetition records, the rotation direction of the motor is reversed with every repetition if this parameter is set to ‘1’. See command 6.14 Setting the repetitions ‘W’.

Reading out

Command ‘Zt’ is used to read out the current valid value.

6.14 Setting the repetitions

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'W'</td>
<td>Integer, allowed values between 0 and 254</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Specifies the number of repetitions of the current record.
A value of 0 indicates an endless number of repetitions.
Normally, the value is set to 1 for one repetition.

Reading out

Command ‘ZW’ is used to read out the current valid value.
6.15 Setting the record pause

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'P'</td>
<td>Integer, allowed values between 0 and 65535</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Specifies the pause between record repetitions or between a record and a continuation record in ms (milliseconds).
If a record does not have a continuation record or a repetition, the pause is not executed and the motor is ready again immediately after the end of the run.

Reading out

Command ‘ZP’ is used to read out the current valid value.

6.16 Setting the continuation record

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'N'</td>
<td>Integer, allowed values between 0 and 32</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Specifies the number of the continuation record. If the parameter is set to ‘0’, a continuation record is not performed.

Reading out

Command ‘ZN’ is used to read out the current valid value.
7 Mode-specific commands

7.1 Setting the dead range for the joystick mode

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'='</td>
<td>Integer between 0 and 100</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Sets the dead range in joystick mode.
In joystick mode, the motor can be moved forward and backward via a voltage on the analogue input.
The value range halfway between the maximum and minimum voltages in which the motor does not rotate is the dead range. It is specified as a percentage of the range width.

Reading out

Command 'Z=' is used to read out the current setting of the dead range.

7.2 Setting the filter for the analogue and joystick modes

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'f'</td>
<td>Integer, allowed values are from 0 to 16</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

In the analogue and joystick modes, the analogue input is used to set the speed. Command 'f' is used to set the number of samples averaged to determine the final value.

Reading out

Command 'Zf' is used to read out the current setting of the value.
7.3 Setting the minimum voltage for the analogue mode

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Q'</td>
<td>Integer, allowed values between -100 and 100</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Specifies the beginning of the range of the analogue input in 0.1V steps.

Reading out

Command ‘ZQ’ is used to read out the current valid value.

7.4 Setting the maximum voltage for the analogue mode

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'R'</td>
<td>Integer, allowed values between -100 and 100</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

Specifies the end of the range of the analogue input in 0.1V steps.

Reading out

Command ‘ZR’ is used to read out the current valid value.
7.5 Setting the dead range for the joystick mode

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘%’</td>
<td>Integer, allowed values between 0 and 100</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo (including invalid values).
Invalid values are ignored.

Description

 Specifies the dead range of the analogue input as a percentage of the range set for the joystick mode.

Reading out

Command ‘Z%’ is used to read out the current valid value.

7.6 Increasing the speed

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘+’</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo.

Description

Increases the speed in the speed mode by 100 steps/s.

7.7 Reducing the speed

Parameter

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘-’</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo.

Description

Decreases the speed in the speed mode by 100 steps/s.
7.8 Actuating the trigger

<table>
<thead>
<tr>
<th>Character</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'T'</td>
<td>None</td>
</tr>
</tbody>
</table>

Firmware response

Confirms the command through an echo.

Description

Trigger for the flag positioning mode.

Before triggering, the motor travels at a constant speed.

After triggering, the motor finishes travelling the set distance from the position where triggering occurred, and then stops.
Index

A
Actuating the trigger ... 48

D
Debouncing .. 31
Debouncing inputs .. 31
Demasking inputs .. 25
DLL library ... 6
Driver command structure .. 5
Driver response ... 5
Driver status ... 21

E
Error codes .. 20

I
Increasing the speed .. 47

L
Loading a record from the EEPROM......................... 35

M
Masking inputs ... 25

O
Old command format ... 6

R
Read command ... 11
Reading out the current record 36
Reading out the encoder position 21
Reading out the error memory 20
Reading out the firmware version 25
Reading out the firmware version (old) 25
Reading out the motor address 23
Reading out the parameter .. 23
Reading out the position .. 22
Reading out the status ... 24
Records .. 12
Reducing the speed .. 47
Resetting the position ... 22
Resetting the position error 20
Reversing the polarity of the inputs and outputs 27
RS485 interface specification 5

S
Save travel distances .. 12
Saving a record ... 37
Set the limit switch type ... 16
Set the phase current .. 13
Set the phase current at standstill 13
Set the reverse clearance 34
Setting analogue mode .. 39
Setting automatic sending of the status 33
Setting clock direction mode 39
Setting flag positioning mode 39
Setting joystick mode ... 39
Setting speed mode ... 38
Setting the change of direction 43
Setting the continuation record 44
Setting the dead range for the joystick mode 45, 47
Setting the debounce time for the inputs 31
Setting the direction of rotation 42
Setting the encoder direction 18
Setting the error correction mode 17
Setting the filter for analogue mode 17
Setting the interrupts of the inputs to a falling flank .. 45
Setting the interrupts of the inputs to a rising flank 30
Setting the limit switch behaviour 15
Setting the maximum encoder deviation 19
Setting the maximum frequency 41
Setting the maximum frequency 2 41
Setting the maximum voltage for the analogue mode .. 46
Setting the minimum frequency 40
Index

Setting the minimum voltage for the analogue mode...46
Setting the motor address14
Setting the motor mode15
Setting the outputs ..32
Setting the position mode.................................38
Setting the positioning mode...........................38
Setting the ramp ...42
Setting the record for auto correction.................18
Setting the record pause44
Setting the repetitions....................................43

Setting the settling time.................................19
Setting the step angle17
Setting the step mode14
Setting the travel distance...............................40
Starting a record ...35
Starting the bootloader33
Stopping a record ...35
Switching the interrupts of the inputs on and off ...28

T

Travel distance, save12