Nanotec Electronic GmbH & Co. KG sponsors research projects in Universities, Colleges and Academies with products and expertise, since many years. 
The funding of a scientific project is carried out under the following conditions:

  • it is thematically / innovative,
  • it is based on methods of scientific work and
  • that its results may have a positive impact on society.

The Germany Scholarship provides financial and non-material support to high-achieving and committed students from all over the world. Modelled after the principle of public-private partnership, businesses, foundations or private individuals sponsor young talent with a pledge of 150 euros per month. The Federal Government matches this amount with another 150 euros. But there is even more: Many universities and private sponsors also support Germany Scholarship holders through concurrent mentoring programmes, networking events and internships.

In our view talendet scientists are the key to Germany's economic future. This has to be supported. Therefore Nanotec Electronic is one of the sponsors of Germany Scholarship.

Awarding the German Scholarship, 2017
Photo: Andreas Heddergott

The declared goal of the "Formula Students" is to design and build a race car within a year and drive it over the finish lines of Europe's racetracks. The e-gnition team of the TUHH (Technical University of Hamburg-Harburg) has successfully participated in this contest with its electrical race car every year since 2012. The team consists of almost 60 students from all TUHH degree programs. In 2017, they ranked 9th amongst participants with electric vehicles at the "Formula Student Germany” which takes place annually at the Hockenheimring race track.

New in 2017 was the driverless category, in which an existing vehicle is converted to a fully autonomous vehicle. In order to do this, the students used Nanotec's DB59S024035 brushless DC motor to rotate the steering shaft and thus steer the car autonomously. It replaces the hands of the driver who would normally turn the steering wheel.

The e-ignition team was delighted after the race, as their autonomously driving race car came in third in the world ranking of the "Autonomous Design Award".

Source and photos: Ole Ramming

Short video under

For 13 months, a team of 21 students from the University of Leuven in Belgium worked on the Punch 2, a new solar car with which they started in the Bridgestone World Solar Challenge in Australia on October 8. The race lead straight through the Australian Outback, from Darwin to Adelaide, over a distance of 3,000 km.

This year a lot of novelties have been put in the solar car. Among other features, the Punch 2 is equipped with a unique mechanical four-wheel steering system which consists of a mechanically decoupled front and rear wheel steering. This means that the front wheels rotate with the first 90° displacement of the steering wheel. When the driver continues to turn the steering wheel, the rear wheel steering is activated additionally. The steering motion is transferred to the four wheels using steel cables and nylon pulleys. 

Because this is a new and quite challenging concept, the team decided to build a copy of the steering system and perform tests with it before implementing the system in the solar car. A brushless DC servo motor from Nanotec was used in combination with a gearbox and linked to the steering wheel to simulate the steering movements during the race. The steering forces were simulated by using strong springs which required a gearbox to provide the required torque. 

Text and photos: Martijn Schaeken

Students majoring in Mechatronics/Precision Engineering at the Munich University of Applied Sciences developed an automated winding machine for guitar pickups as part of the “mechatronic integration” seminar in this year’s summer semester. 

A special spring system was developed so that the enameled copper wire did not snap when it was wound onto the spool. For driving the pickup, the NEMA 23 stepper motor ST5918 was used. With the help of a SMCI35 controller, it was possible to actuate the motor in such a way that there is a ramped increase in speed up to a threshold value when the number of windings increases. Then it rotates at a constant speed until the process is stopped. 

Furthermore, by using the linear positioning drive LS20, the wire is fed parallel to the rotational axis of the pickup across the whole width of the spool continuously.

From May 14 to May 15, 2016, the third edition of the Ecorace-Challenge took place in Bruges, Belgium. Seven teams competed with their scale models to win the award for the most innovative vessel, the best all-round cargo vessel, the best all-round no-cargo vessel and the the best business plan.

The awards for the most innovative vessel and the best all-around cargo boat went to the University KU Leuven for “Galena”, a model of a cargo vessel designed to carry one ton of goods and sail inland waterways. In the future Galena is supposed to sail completely autonomous. The steering of the vessel is powered by Nanotec’s PD4-N5918L4204 connected to the gearbox GPLE60-2S-16.

We congratulate Dominic Libanio, Christian Schorr and Pascal Lindemann on winning first place in the regional "Jugend Forscht" competition and on coming in second in the Ideenwettbewerb Rheinland-Pfalz ("Ideas Competition"). The project, which Nanotec supported with motors, dealt with the development of a hand therapy device.

Often, the results achieved by hand surgery and follow-up therapy are not satisfactory because physical therapy is neither prescribed nor performed to the extent necessary for reasons of cost and time. The consequences range from elementary restrictions in movement to significant disruptions in the fine motor skills. The therapy device for the hands shown here is intended to support physicians and physiotherapists. Each finger receives an individually fitted mechanism that is driven by a Nanotec linear motor. 

At a Berlin school, the students of Applied Industrial Electronics were commissioned to develop a robot that builds a wall of any height and shape on the basis of custom software. Controlled by an on-board ATmega32, a virtually autonomous wireless vehicle was then constructed within six months. This vehicle is powered by two on-board Nanotec stepper motors, each driving a shaft-mounted, exterior aluminum wheel, thus providing precise position control. Stability is ensured by two supports on the ground at the front and back that slide when the vehicle is in motion and bear part of the vehicle's weight. A linear actuator on the front drives an arm up and down a linear guide. Equipped with an electromagnet, the arm lifts and places the wooden blocks, which are fitted with a metal plate, in a predetermined position. The vehicle's power supply is ensured by means of a 12V lithium-polymer battery. With the help of an intuitive user interface the user controls the vehicle as it travels between the base station and building site to erect a wall of variable height.

Since 2009, the institute for Mechanical Engineering at the Westphalian University of Applied Sciences in Gelsenkirchen has held an annual competition where teams of students develop a machine that has to fulfil a specific task. This year the challenge was to construct, manufacture and program an automated bottle opener for crown corks. After opening the bottle, a defined amount of the drink should be poured automatically into a glass. The winner of the 2015 competition is a bottle opener where the four-member construction team had selected the linear actuator LS4118S1404-T6x2-75 from Nanotec for opening the bottles – the decisive factors were speed and reliability.

The purpose of the Mechatronics and Precision Mechanics project module at the University of Applied Sciences Munich is to create a finished product, including presentation and demonstration, from a project idea or an existing project. The students of the 2015 summer semester embarked on designing a peristaltic pump with a delivery rate of one liter per minute. This involved writing the necessary software, building the pump and taking it into service. The pump is controlled via an Arduino Micro, a board houses the micro controller, parts of the power supply and the motor driver. The motor speed is checked using a perforated disc and evaluated by the software. A Nanotec stepper motor provides the central interface between the software and the design part of the peristaltic pump. 

At the Institute for Applied Theatre Studies at the Justus-Liebig-Universität Gießen, a student project had the task of reconstructing the "Kentucky Derby" – a country fair game booth. In this game of skill, players adroitly maneuver game balls to urge their mechanical horses toward the finish line. Unlike the archetype, however, this new version has no direct interaction between the players and the course of the game. Instead, the participants are seated in another room where the game supervisor observes them on a camera. The more enthusiasm the players demonstrate as they encourage their horses toward the finish line – by shouting or clapping, for example – the faster the game supervisor moves the horses forward. The horses are powered by Nanotec stepper motors of type PD4-N6018L420. These are controlled by the same software as the light and sound installations – a perfect combination of mechanical elements and audio-visual media.

In the winter semester 2014/15, mechatronics students at the Karlsruhe University of Applied Sciences developed a table hockey robot as part of a project study. The robot is supposed to replace a player and play against a human opponent, acting completely autonomously and making decisions about the play situation by itself. Both the puck position and its speed are registered by a sensor system and processed by evaluation electronics. The data is then sent to the mechanically-controlled pusher, so that it can move to a particular position and push the puck back. Nanotec stepper motors are used to move the carriages to which the pusher is fastened. The ST5918L4508 provides the right torque for this application and is operated here by the SMCI35 controller.

Source and photo: Jakob Bokemeyer, Sergej Krohmer, Tobias Sperling, Urs Wetzel, Simon Wörner, Karlsruhe Univeristy of Applied Sciences

Nanotec Electronic was on of the supporters of the MALOMAT project, which was developed from students on the Hochschule Augsburg, to provide severely handicapped children a possiblity to paint a canvas on their own. 

The Fritz-Felsensteinhaus in Köngisbrunn is a school for physically and mentally disabled children. Painting takes an important part in their education. But the kids are not able to paint the canvas on their own. They show their teachers the colours they'd like to see on the linen and where. Afterwards the teachers apply it for them. 

The MALOMAT allows the pupils to do the painting on their own, either alone or two by two. They can chose between three colours and between different difficulty levels. The MALOMAT contains a gearded motor and motor control sponsored from Nanotec. 

Something that is not often seen: A kite used to generate wind power. Nanotec supported that project from students of the Duale Hochschule Baden-Württemberg Heidenheim with SMCI36 and SMCI35 stepper motor controls. With the project, the students gained the victory as European best team in the Baden-Württemberg Challenge des European Satelite Navigation Competition 2011, also known as "Galileo Masters".